Building an Open Source Telemetry Radio

Andrew Tridgell (VK1FAAH)

Communicating with UAVs

- Telemetry for UAV \leftrightarrow ground station comms
 - real-time flight data
 - reliable control and override
 - low bandwidth (typically 3 kbytes/second)
 - highly repetitive data (e.g. 4Hz sensor data)
- MAVLink protocol
 - Micro Aerial Vehicle communications protocol
 - encapsulates sensor, fight data and control data
 - XML based protocol definition

UAV Schematic

3DR Telemetry Radio

Si1000 SoC

- 8051 embedded micro, 25 MHz
- RAM: 128 + 256 + 4096
- 64kbyte EPROM for firmware
- GFSK modulation
- TTL serial interface
- 433 and 915 MHz variants (868 and 470 possible)
- 20dBm max transmit power
- -121dBm receive sensitivity

3DRobotics

Existing firmware

- Very simplistic existing firmware
 - copies bytes from serial to radio
 - copies bytes from radio to serial
 - no attempt at avoiding collisions
 - no frequency hopping, no LBT, no encapsulation
 - no attempt at complying with licensing rules

Coding for Si1000

- SDCC Compiler
 - specialist C compiler for small devices
 - 3 memory models (small, medium, large)
 - not stack based by default
 - need to tag variables with memory type
 - support for boolean single bit types
 - nice support for critical sections

Avoiding collisions

- Don't all talk at once!
 - radio can either be listening or sending, not both
 - only one frequency can be tuned at a time
- How to avoid collisions?
 - simplest solution is to have "time slots" for transmission for each radio
 - this is called TDM (time division multiplexing)

Time Division Multiplexing

Send window: typically 100ms (6200 ticks) Silence period: typically 5ms (360 ticks)

Time Division Multiplexing ...

Data (up to 250 bytes) Trailer (16 bits)

```
struct tdm_trailer {
    uint16_t window:13;
    uint16_t command:1;
    uint16_t bonus:1;
    uint16_t resend:1;
};
```

- Adaptive timing
 - sender gives up time slice with zero data send
 - 'window' is number of 16 usec ticks remaining
 - 'command' allows for remote command operations
 - 'resend' allows for opportunistic data resend
 - note that this all works for 1-way links too

Frequency Hopping

- Changing frequency regularly helps
 - allows more users of same frequency band
 - required for compliance in many countries
- Frequency hopping in Si1000
 - registers for base frequency and channel separation
 - register for current channel

Frequency Hopping ...

- Randomised channels
 - create random channel order based on network ID
 - switch channels at end of each TDM cycle
- Initial search
 - until lock achieved, move receive frequency slowly
 - lock is achieved by single received packet

Error Correction

- Losing one bit can be bad
 - single bit error causes packet loss
 - how to handle errors?
- Error correcting code
 - many available, chose Golay 23/12 code
 - same as used by Voyager 1 & 2
 - table based in flash, very low memory use
 - corrects up to 3 bit errors per 12 bits of data
 - halves bandwidth, but increases noise robustness

Other features

- Regulatory compliance
 - Listen Before Talk (LBT) for EU compliance
 - duty cycle for EU compliance
- User control
 - 'AT' interface for configuration
 - 'RT' interface for remote configuration
- MAVLink features
 - mavlink framing for lower data loss
 - 'RADIO' MAVLink packets for reporting and flow control

More range - RFD900

- Longer range needed for S&R UAVs
 - Collaboration with RFDesign in Brisbane
 - Added 20dB power amplifier (PA)
 - Added 20dB low noise receive amplifier (LNA)
 - Added RX SAW filter and TX low pass filter
 - Added antenna diversity
- Much more range
 - Range of around 60-80km with omni antennas
 - Only small firmware modifications required

Range testing

Noise Testing

Transferring images

- A telemetry radio is great for telemetry, but what about images?
 - typically much higher bandwidth requirements
 - non-repetitive data, usually not time critical
 - needs guaranteed delivery for S&R target images
- CanberraUAV setup
 - one RFD900 and one Ubiquity 5.8GHz bridge
 - full redundancy, mission completion with either radio

Full versus Thumbnail

The problem with TCP

- Initially tried TCP for image transfer
 - very poor handling of packet loss
 - largely assumes loss is congestion
 - changing congestion control algorithm didn't help
 - very poor control over bandwidth usage
- UAV communication is unusual
 - single user of radio link greed is good!
 - link loss varies widely during flight, from 5% to 95%
 - need to use available bandwidth efficiently
 - at 90% packet loss, should get 10% throughput

BlockXmit Protocol

- New protocol for block data transfer
 - user specified bandwidth and segment size
 - user supplied packet encapsulation
 - greedy use of bandwidth. If you aren't sending, you are wasting bandwidth.
 - extent based acknowledgement system
 - multiple blocks in flight

BlockXmit Packets

BLOCK_CHUNK uint64 block_id uint32 block_size uint16 chunk_id uint16 chunk_size uint16 ack_to uint64 timestamp uint8 data[]

BLOCK_ACK uint64 block_id uint16 num_chunks uint64 timestamp BLOCK_EXTENT extents[]

BLOCK_EXTENT uint16 start uint16 count

Selecting Chunks

- What chunk to send next?
 - keep an estimate of the link round trip time
 - send first chunk that has not been sent within RTT
- Optional extras
 - ordered delivery can be set enabled if needed
 - each block has a priority, allowing urgent data to jump the queue

More information

- Source code, schematics etc
 - SiK firmware: http://github.com/tridge/SiK
 - 3DR Radios: http://code.google.com/p/ardupilot-mega/wiki/3DRadio
 - RFD900: http://rfdesign.com.au/index.php/rfd900
 - Block Xmit: https://github.com/tridge/cuav
 - MAVLink: https://github.com/mavlink
 - CanberraUAV: http://www.canberrauav.com/