

Building an Open Source
Telemetry Radio

Andrew Tridgell
(VK1FAAH)

Communicating with UAVs

● Telemetry for UAV ↔ ground station comms
– real-time flight data

– reliable control and override

– low bandwidth (typically 3 kbytes/second)

– highly repetitive data (e.g. 4Hz sensor data)

● MAVLink protocol
– Micro Aerial Vehicle communications protocol

– encapsulates sensor, fight data and control data

– XML based protocol definition

UAV Schematic

3DR Telemetry Radio

● Si1000 SoC
– 8051 embedded micro, 25 MHz

– RAM: 128 + 256 + 4096

– 64kbyte EPROM for firmware

– GFSK modulation

– TTL serial interface

– 433 and 915 MHz variants (868 and 470 possible)

– 20dBm max transmit power

– -121dBm receive sensitivity

Existing firmware

● Very simplistic existing firmware
– copies bytes from serial to radio

– copies bytes from radio to serial

– no attempt at avoiding collisions

– no frequency hopping, no LBT, no encapsulation

– no attempt at complying with licensing rules

Coding for Si1000

● SDCC Compiler
– specialist C compiler for small devices

– 3 memory models (small, medium, large)

– not stack based by default

– need to tag variables with memory type

– support for boolean single bit types

– nice support for critical sections

Avoiding collisions

● Don't all talk at once!
– radio can either be listening or sending, not both

– only one frequency can be tuned at a time

● How to avoid collisions?
– simplest solution is to have “time slots” for

transmission for each radio

– this is called TDM (time division multiplexing)

Time Division Multiplexing

Recv1
Send2

Send1
Recv2

Send1
Recv2

Send window: typically 100ms (6200 ticks)
Silence period: typically 5ms (360 ticks)

Frequency N Frequency N+1

Time Division Multiplexing ...

Data
(up to 250 bytes)

Trailer
(16 bits)

struct tdm_trailer {
uint16_t window:13;
uint16_t command:1;
uint16_t bonus:1;
uint16_t resend:1;

};

● Adaptive timing
– sender gives up time slice with zero data send
– 'window' is number of 16 usec ticks remaining
– 'command' allows for remote command operations
– 'resend' allows for opportunistic data resend
– note that this all works for 1-way links too

Frequency Hopping

● Changing frequency regularly helps
– allows more users of same frequency band

– required for compliance in many countries

● Frequency hopping in Si1000
– registers for base frequency and channel

separation

– register for current channel

Frequency Hopping ...

● Randomised channels
– create random channel order based on network ID

– switch channels at end of each TDM cycle

● Initial search
– until lock achieved, move receive frequency slowly

– lock is achieved by single received packet

Error Correction

● Losing one bit can be bad
– single bit error causes packet loss

– how to handle errors?

● Error correcting code
– many available, chose Golay 23/12 code

– same as used by Voyager 1 & 2

– table based in flash, very low memory use

– corrects up to 3 bit errors per 12 bits of data

– halves bandwidth, but increases noise robustness

Other features

● Regulatory compliance
– Listen Before Talk (LBT) for EU compliance

– duty cycle for EU compliance

● User control
– 'AT' interface for configuration

– 'RT' interface for remote configuration

● MAVLink features
– mavlink framing for lower data loss

– 'RADIO' MAVLink packets for reporting and flow control

More range - RFD900

● Longer range needed for S&R UAVs
– Collaboration with RFDesign in Brisbane

– Added 20dB power amplifier (PA)

– Added 20dB low noise receive amplifier (LNA)

– Added RX SAW filter and TX low pass filter

– Added antenna diversity

● Much more range
– Range of around 60-80km with omni antennas

– Only small firmware modifications required

Range testing

Noise Testing

Transferring images

● A telemetry radio is great for telemetry, but what
about images?
– typically much higher bandwidth requirements

– non-repetitive data, usually not time critical

– needs guaranteed delivery for S&R target images

● CanberraUAV setup
– one RFD900 and one Ubiquity 5.8GHz bridge

– full redundancy, mission completion with either radio

Full versus Thumbnail

The problem with TCP

● Initially tried TCP for image transfer
– very poor handling of packet loss

– largely assumes loss is congestion

– changing congestion control algorithm didn't help

– very poor control over bandwidth usage

● UAV communication is unusual
– single user of radio link – greed is good!

– link loss varies widely during flight, from 5% to 95%

– need to use available bandwidth efficiently

– at 90% packet loss, should get 10% throughput

BlockXmit Protocol

● New protocol for block data transfer
– user specified bandwidth and segment size

– user supplied packet encapsulation

– greedy use of bandwidth. If you aren't sending,
you are wasting bandwidth.

– extent based acknowledgement system

– multiple blocks in flight

BlockXmit Packets
BLOCK_CHUNK

uint64 block_id
uint32 block_size
uint16 chunk_id
uint16 chunk_size
uint16 ack_to
uint64 timestamp
uint8 data[]

BLOCK_ACK
uint64 block_id
uint16 num_chunks
uint64 timestamp
BLOCK_EXTENT extents[]

BLOCK_EXTENT
uint16 start
uint16 count

Selecting Chunks

● What chunk to send next?
– keep an estimate of the link round trip time

– send first chunk that has not been sent within RTT

● Optional extras
– ordered delivery can be set enabled if needed

– each block has a priority, allowing urgent data to
jump the queue

More information

● Source code, schematics etc
– SiK firmware: http://github.com/tridge/SiK

– 3DR Radios:
http://code.google.com/p/ardupilot-mega/wiki/3DRadio

– RFD900: http://rfdesign.com.au/index.php/rfd900

– Block Xmit: https://github.com/tridge/cuav

– MAVLink: https://github.com/mavlink

– CanberraUAV: http://www.canberrauav.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

