Affordable Differential GPS

Ben Nizette and Andrew Tridgell Australian National University CanberraUAV

Better positioning – cheaply!

- Very accurate GPS systems are possible, but expensive
- Can we build one cheaply?
- Needed for:
 - accurate UAV flight
 - swarming quadcopters
 - accurate ground rovers

How does GPS work?

- "Clocks in the sky"
 - each satellite broadcasts a time signal, plus orbit information
 - receivers calculate 'pseudoranges' to visible satellites
 - receivers triangulate their position
 - least-squares solution in 4 dimensions (position+time)
- Phase information
 - more accuracy by tracking 'carrier phase'
 - need to disambiguate solution as multiple of 19cm wavelength

How accurate is GPS?

- It depends on how much you spend!
 - 'base' GPS in Australia is around 10m error horizontally (for around \$50)
 - in US, Europe and Japan SBAS (Satellite Based Augmentation System) can reduce error to around 3m
 - dual frequency GPS receivers can do a lot better, but cost more than \$2k for a cheap one
 - with a source of corrections and dual-frequency 10cm accuracy is common
 - with great corrections and a \$10k receiver you can get better than 1cm
- Or how much CPU you have
 - Possible to run open source RTK solutions (like RTKlib) if you have enough CPU power in on a ground station and on the rover.

Sources of GPS error

- Major error sources
 - mismatch between ionospheric model and actual conditions
 - 'space weather' largely solar activity
 - multi-pathing
 - dynamic model mismatch to real movement
 - bugs in code and standards (can be arbitrarily large!)
 - tropospheric errors
 - antenna errors
 - clock errors
 - orbital errors

Differential GPS

- Major errors are spatially correlated
 - two receivers that are close to each other see the same ionospheric errors
 - This is the basis for how DGPS works
- Steps in DGPS
 - Use a reference station to measure error
 - assumes you know the true position of the reference
 - Send measured errors to 'rover'
 - Rover subtracts errors from its pseudoranges
 - Rover performs normal triangulation with corrected ranges
- How much can it help?
 - Expected improvement is roughly 50% to 70% reduction in horizontal errors

Raw receivers

- For DGPS we need a 'raw capable' receiver
 - A 'raw capable' receiver gives the pseudoranges and carrier phase in the local protocol
 - These pseudoranges are combined with reference position to calculate the per-satellite corrections
- Raw capable receivers are more expensive
 - cheapest is around \$80 for a uBlox-6T
 - much cheaper than commercial DGPS reference stations, which cost many thousands

Constructing the corrections

- We know the reference station position exactly, but not time
 - From the pseudoranges and reference position, we solve for the receiver's clock error
 - What's left can be directly compared to the geometric range between the receiver and satellite
 - The difference is the error
- Cheap receivers can accept corrections in RTCMv2 format
 - Modelled after the GPS satellite format, very hard to work with!
 - Contains pseudorange corrections, rates, estimated satellite qualities

Infrastructure references - NTRIP

NTRIP to RTCMv2

- Geoscience Australia also generates corrections
 - Some stations require a fee, some are free to use for non-commercial purposes (if you ask nicely!)
 - Available in NTRIP (encapsulated RTCMv3)
 - Need to convert between v3 from GA and v2 for the receivers
- RTCMv3 doesn't provide corrections directly
 - Provides observations at reference point
 - Similar to raw receiver outputs but corrected for receiver clock error
 - We know both where the reference is and *when* it is
 - Can then difference the geometric ranges and observed pseudoranges

Test setups

- Rooftop system
 - 3 receivers on Canberra roof
 - one raw capable uBlox
 6P, two low cost uBlox
 modules
- Spring Valley farm
 - 3 uBlox 6T modules
 - much clearer view of sky

72 Hours on rooftop system

18 hours at Spring Valley

Vehicle Testing

Testing at UWA in Perth

Testing in a SkyWalker aircraft

Other low cost options

- SwiftNav 'Piksi' GPS
 - around \$500 per module
 - built-in STM32 running RTK
 - may be able to get decimeter accuracy for \$1000
- RTKLib
 - open source GPS library implementing RTK
 - combined with a RaspberryPi or BeagleBone may be able to get decimeter accuracy
 - requires substantial CPU resources in aircraft

Conclusions

- It is possible to get better relative positioning using cheap DGPS and RTCMv2 injection
- Getting a good reference position is hard!
- New options such as Piksi will open up some new low cost options
- Altitude is still poor even with DGPS, so landing by GPS is still not a good option

Code: http://github.com/tridge/pyUblox

180°

