
APM on Linux

Porting an 8 bit autopilot to Linux Andrew Tridgell

APM autopilots over time

History of ArduPilot

- Originally for 8 bit AVR micros
 - 'arduino' sketch
 - 8k ram
 - 16 MHz
 - extensive used of arduino 'wire' libraries
- SITL port
 - port to desktop OSs (eg. Linux), hacked on top of wire emulation layer

Introduction of AP_HAL

- AP_HAL added for PX4
 - creates hardware abstraction layer
 - work begun by Pat Hickey
 - allows porting to many OSes and CPU architectures
 - avoids arduino wire library
 - keeps 'sketch' structure to allow building with arduino GUI

AP_HAL ports

- Current ports
 - AP_HAL_AVR (8 bit AVR2560)
 - AP_HAL_AVR_SITL (SITL simulator)
 - AP_HAL_PX4 (PX4 based autopilots)
 - AP_HAL_Flymaple (low cost ARM autopilot)
 - AP_HAL_VRBrain (ARM32 autopilot)
 - AP_HAL_Linux (embedded Linux port)
 - AP_HAL_Empty (very useful!)

Why AP_HAL_Linux?

- Complex UAVs
 - many complex UAVs have a embedded Linux box on board for imaging and other complex tasks
 - having a separate board makes UAV larger and wiring complex
 - Linux port enables WiFi, cameras and other features
 - allows for self-hosted autopilot
 - should be a fun hack!

Difficulties of AP_HAL_Linux

- Predictable timing
 - autopilots need predictable timing
 - difficult to achieve on Linux
- Bus access and latency
 - autopilots need good SPI and I2C drivers
 - these are unusual on Linux and usually low rate

What latencies are needed?

- 100nsec:
 - SPI bus transitions, almost certainly done in hardware
- 1usec:
 - PWM transitions, probably done in PRUs
 - PPMSUM input and SBUS, maybe in PRUs, maybe in timer capture?
- 1msec
 - sensor input (gyros, accels). Possibly helped by FIFOs
- 20msec
 - barometer, compass, airspeed, sonar (I2C, SPI and analog)
- 200msec
 - GPS

Linux Boards

- Two boards investigated
 - RaspberryPi
 - BeagleBone Black
- BeagleBone Black looks more interesting
 - more GPIO pins
 - has PWM support
 - has two PRUs for realtime operations

Distros and Setup

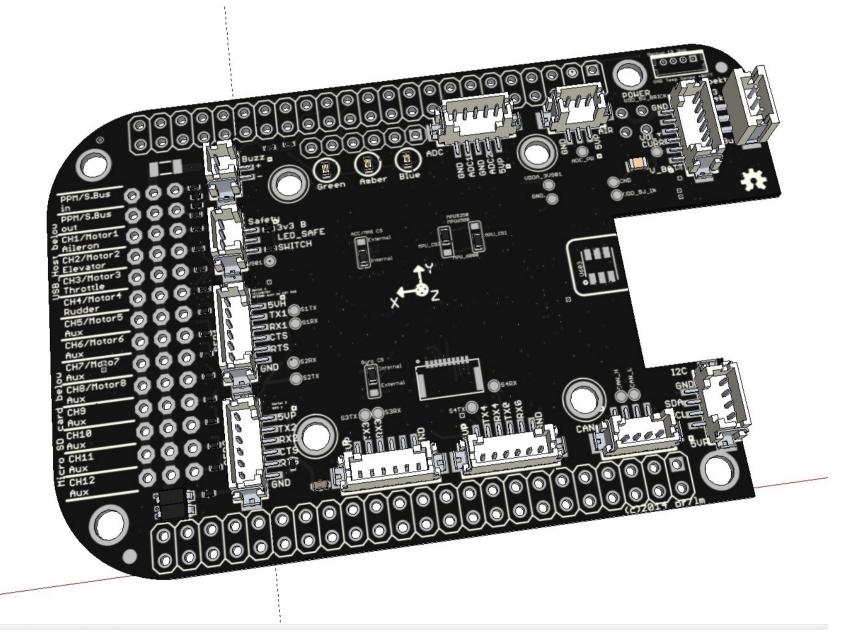
- Angstrom
 - Started with Angstrom on BBB
 - found it difficult for general development
 - switched to Debian much happier!
- Setup as NFS root and NFS kernel
 - makes development faster at home
 - switched back to MMC for this talk

Autopilot Sensors

- An autopilot needs:
 - 3D gyroscope
 - 3D accelerometer
 - 3D magnetometer
 - barometer
 - GPS
 - airspeed
 - telemetry ports

Cheap Sensor

- Started with cheap "10 Dof" ebay sensor
 - 3D accel ADXL345
 - 3D gyro L3G4200D
 - HMC5883 magnetometer
 - barometer bmp085
- Added normal additional devices
 - MS4525DO I2C differential pressure sensor (airspeed)
 - uBlox GPS


Linux I2C interface

- Started with I2C drivers
 - latency was very high for default API
 - switched to ioctl API and better, but not good
 - now using batched ioctl, and a bit better
 - need fast SPI!
 - probably will end up with kernel driver

Scheduling issues

- Can Linux scheduler reliably enough?
 - difficult with default kernel!
 - lots of scheduling misses
 - switch to RT/Preempt kernel from Ingo
 - much better!
 - also needed to disable freq scaling
 - needed to lock down memory and prefault stack
 - needed to force 400kHz I2C bus

PixHawk Fire Cape

Interesting issues

- Issues hit during port
 - how to measure time? (montonic vs wallclock)
 - how to delay for a time?
 - coping with tight loops
 - scheduling priorities
 - uart and IO threads

What's missing?

- Still to be done
 - PixHawk Fire cape drivers
 - PRU drivers
 - PWM drivers
 - SPI drivers for cape sensors
 - RC input
 - power handling
 - analog sensing
 - flight tests!
 - web based development environment