APM on Linux

Porting an 8 bit autopilot to Linux
Andrew Tridgell



APM autopilots over time

ArduPilot APM 1 APM 2 APM 2.5/2.6 Pixhawk
2009 2010 2011 2012 2013



History of ArduPilot

* Originally for 8 bit AVR micros

- 'arduino’ sketch
- 8k ram
- 16 MHz

- extensive used of arduino 'wire' libraries
« SITL port

- port to desktop OSs (eg. Linux), hacked on top of
wire emulation layer



Introduction of AP_ HAL

 AP_HAL added for PX4

— creates hardware abstraction layer
- work begun by Pat Hickey

- allows porting to many OSes and CPU
architectures

— avoids arduino wire library

— keeps 'sketch’ structure to allow building with
arduino GUI



AP _HAL ports

e Current ports

- AP_
- AP_
- AP_
- AP_
- AP_
- AP_
- AP_

A

> > > > > P

__AVR (8 bit AVR2560)
__AVR_SITL (SITL simulator)

_ PX4 (PX4 based autopilots)
__Flymaple (low cost ARM autopilot)
__VRBrain (ARM32 autopilot)
__Linux (embedded Linux port)

__Empty (very useful!)



Why AP HAL Linux?

« Complex UAVs

- many complex UAVs have a embedded Linux box
on board for imaging and other complex tasks

- having a separate board makes UAV larger and
wiring complex

- Linux port enables WiFi, cameras and other
features

- allows for self-hosted autopilot
- should be a fun hack!



Difficulties of AP HAL Linux

e Predictable timing

— autopilots need predictable timing
— difficult to achieve on Linux

e Bus access and latency

— autopilots need good SPI and 12C drivers
- these are unusual on Linux and usually low rate



What latencies are needed?

100nsec:
» SPI bus transitions, almost certainly done in hardware
1usec:

« PWM transitions, probably done in PRUs
« PPMSUM input and SBUS, maybe in PRUs, maybe in timer capture?

Tmsec

» sensor input (gyros, accels). Possibly helped by FIFOs
20msec

» barometer, compass, airspeed, sonar (I12C, SPI and analog)
200msec

« GPS



Linux Boards

 Two boards investigated
- RaspberryPi
- BeagleBone Black
 BeagleBone Black looks more interesting

- more GPIO pins
- has PWM support
- has two PRUs for realtime operations



Distros and Setup

e Angstrom

- Started with Angstrom on BBB
- found it difficult for general development
- switched to Debian — much happier!

e Setup as NFS root and NFS kernel

- makes development faster at home
- switched back to MMC for this talk



Autopilot Sensors

* An autopilot needs:

- 3D gyroscope

- 3D accelerometer
- 3D magnetometer
- barometer

- GPS

— airspeed

- telemetry ports



Cheap Sensor

» Started with cheap “10 Dof” ebay sensor
- 3D accel ADXL345
- 3D gyro L3G4200D
- HMC5883 magnetometer
- barometer bmp085

« Added normal additional devices

- MS4525DO0 12C differential pressure sensor (airspeed)
- uBlox GPS



Linux I12C interface

e Started with 12C drivers

- latency was very high for default API
— switched to ioctl APl and better, but not good
— now using batched ioctl, and a bit better

- need fast SPI!
— probably will end up with kernel driver



Scheduling issues

* Can Linux scheduler reliably enough?

difficult with default kernel!

lots of scheduling misses

switch to RT/Preempt kernel from Ingo
much better!

also needed to disable freq scaling

needed to lock down memory and prefault stack
needed to force 400kHz I12C bus



PixHawk Fire Cape




Interesting issues

 |ssues hit during port

- how to measure time”? (montonic vs wallclock)
- how to delay for a time?

— coping with tight loops

— scheduling priorities

— uart and |O threads



What's missing?

e Still to be done

- PixHawk Fire cape drivers
 PRU drivers
- PWM drivers

- SPI drivers for cape sensors

- RC input

- power handling

- analog sensing

- flight tests!

- web based development environment



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

