

APM on Linux

Porting an 8 bit autopilot to Linux
Andrew Tridgell

APM autopilots over time

History of ArduPilot

● Originally for 8 bit AVR micros
– 'arduino' sketch

– 8k ram

– 16 MHz

– extensive used of arduino 'wire' libraries

● SITL port
– port to desktop OSs (eg. Linux), hacked on top of

wire emulation layer

Introduction of AP_HAL

● AP_HAL added for PX4
– creates hardware abstraction layer

– work begun by Pat Hickey

– allows porting to many OSes and CPU
architectures

– avoids arduino wire library

– keeps 'sketch' structure to allow building with
arduino GUI

AP_HAL ports

● Current ports
– AP_HAL_AVR (8 bit AVR2560)

– AP_HAL_AVR_SITL (SITL simulator)

– AP_HAL_PX4 (PX4 based autopilots)

– AP_HAL_Flymaple (low cost ARM autopilot)

– AP_HAL_VRBrain (ARM32 autopilot)

– AP_HAL_Linux (embedded Linux port)

– AP_HAL_Empty (very useful!)

Why AP_HAL_Linux?

● Complex UAVs
– many complex UAVs have a embedded Linux box

on board for imaging and other complex tasks

– having a separate board makes UAV larger and
wiring complex

– Linux port enables WiFi, cameras and other
features

– allows for self-hosted autopilot

– should be a fun hack!

Difficulties of AP_HAL_Linux

● Predictable timing
– autopilots need predictable timing

– difficult to achieve on Linux

● Bus access and latency
– autopilots need good SPI and I2C drivers

– these are unusual on Linux and usually low rate

What latencies are needed?

● 100nsec:
● SPI bus transitions, almost certainly done in hardware

● 1usec:
● PWM transitions, probably done in PRUs
● PPMSUM input and SBUS, maybe in PRUs, maybe in timer capture?

● 1msec
● sensor input (gyros, accels). Possibly helped by FIFOs

● 20msec
● barometer, compass, airspeed, sonar (I2C, SPI and analog)

● 200msec
● GPS

Linux Boards

● Two boards investigated
– RaspberryPi

– BeagleBone Black

● BeagleBone Black looks more interesting
– more GPIO pins

– has PWM support

– has two PRUs for realtime operations

Distros and Setup

● Angstrom
– Started with Angstrom on BBB

– found it difficult for general development

– switched to Debian – much happier!

● Setup as NFS root and NFS kernel
– makes development faster at home

– switched back to MMC for this talk

Autopilot Sensors

● An autopilot needs:
– 3D gyroscope

– 3D accelerometer

– 3D magnetometer

– barometer

– GPS

– airspeed

– telemetry ports

Cheap Sensor

● Started with cheap “10 Dof” ebay sensor
– 3D accel ADXL345

– 3D gyro L3G4200D

– HMC5883 magnetometer

– barometer bmp085

● Added normal additional devices
– MS4525DO I2C differential pressure sensor (airspeed)

– uBlox GPS

Linux I2C interface

● Started with I2C drivers
– latency was very high for default API

– switched to ioctl API and better, but not good

– now using batched ioctl, and a bit better

– need fast SPI!

– probably will end up with kernel driver

Scheduling issues

● Can Linux scheduler reliably enough?
– difficult with default kernel!

– lots of scheduling misses

– switch to RT/Preempt kernel from Ingo

– much better!

– also needed to disable freq scaling

– needed to lock down memory and prefault stack

– needed to force 400kHz I2C bus

PixHawk Fire Cape

Interesting issues

● Issues hit during port
– how to measure time? (montonic vs wallclock)

– how to delay for a time?

– coping with tight loops

– scheduling priorities

– uart and IO threads

What's missing?

● Still to be done
– PixHawk Fire cape drivers

● PRU drivers

– PWM drivers

– SPI drivers for cape sensors

– RC input

– power handling

– analog sensing

– flight tests!

– web based development environment

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

