
11 11 TEX LATEX

The Magic Cauldron

by Eric S. Raymond June 1999

This paper analyzes the evolving economic substrate of the open-source phenomenon. We �rst explode some

prevalent myths about the funding of program development and the price structure of software. We present a

game-theory analysis of the stability of open-source cooperation. We present nine models for sustainable funding

of open-source development; two non-pro�t, seven for-pro�t. We continue to develop a qualitative theory of when

it is economically rational to be closed. We then examine some novel additional mechanisms the market is now

inventing to fund for-pro�t open-source development, including the reinvention of the patronage system and task

markets. We conclude with some tentative predictions of the future.

Contents

1 Indistinguishable From Magic 2

2 Beyond Geeks Bearing Gifts 2

3 The Manufacturing Delusion 3

4 The �information wants to be free� Myth 5

5 The Inverse Commons 6

6 Reasons for Closing Source 7

7 Use-Value Funding Models 8

7.1 The Apache case: cost-sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

7.2 The Cisco case: risk-spreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

8 Why Sale Value is Problematic 9

9 Indirect Sale-Value Models 10

9.1 Loss-Leader/Market Positioner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

9.2 Widget Frosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

9.3 Give Away the Recipe, Open A Restaurant . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

9.4 Accessorizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

9.5 Free the Future, Sell the Present . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

9.6 Free the Software, Sell the Brand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

9.7 Free the Software, Sell the Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

10 When To Be Open, When To Be Closed 14

10.1 What Are the Payo�s? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

10 2 How Do They Interact? 14



1. Indistinguishable From Magic 2

1 Indistinguishable From Magic

In Welsh myth, the goddess Ceridwen owned a great cauldron which would magically produce nourishing

food � when commanded by a spell known only to the goddess. In modern science, Buckminster Fuller gave

us the concept of `ephemeralization', technology becoming both more e�ective and less expensive as the

physical resources invested in early designs are replaced by more and more information content. Arthur C.

Clarke connected the two by observing that �Any su�ciently advanced technology is indistinguishable from

magic�.

To many people, the successes of the open-source community seem like an implausible form of magic. High-

quality software materializes �for free�, which is nice while it lasts but hardly seems sustainable in the real

world of competition and scarce resources. What's the catch? Is Ceridwen's cauldron just a conjuring trick?

And if not, how does ephemeralization work in this context � what spell is the goddess speaking?

2 Beyond Geeks Bearing Gifts

The experience of the open-source culture has certainly confounded many of the assumptions of people

who learned about software development outside it. �The Cathedral and the Bazaar� 16 () described the

ways in which decentralized cooperative software development e�ectively overturns Brooks's Law, leading

to unprecedented levels of reliability and quality on individual projects. �Homesteading the Noosphere� 16

() examined the social dynamics within which this `bazaar' style of development is situated, arguing that

it is most e�ectively understood not in conventional exchange-economy terms but as what anthropologists

call a `gift culture' in which members compete for status by giving things away. In this paper we shall

begin by exploding some common myths about software production economics; then continue the analysis

of 16 () and 16 () into the realm of economics, game theory and business models, developing new conceptual

tools needed to understand the way that the gift culture of open-source developers can sustain itself in an

exchange economy.

In order to pursue this line of analysis without distraction, we'll need to abandon (or at least agree to

temporarily ignore) the `gift culture' level of explanation. 16 () posited that gift culture behavior arises in

situations where survival goods are abundant enough to make the exchange game no longer very interesting;

but while this appears su�ciently powerful as a psychological explanation of behavior, it lacks su�ency as

an explanation of the mixed economic context in which most open-source developers actually operate. For

most, the exchange game has lost its appeal but not its power to constrain. Their behavior has to make

su�cient material-scarcity-economics sense to keep them in a gift-culture-supporting zone of surplus.

Therefore, we now will consider (from entirely within the realm of scarcity economics) the modes of coop-

eration and exchange that sustain open-source development. While doing so we will answer the pragmatic

question �How do I make money at this?�, in detail and with examples. First, though, we will show that much

of the tension behind that question derives from prevailing folk models of software-production economics

that are false to fact.

(A �nal note before the exposition: the discussion and advocacy of open-source development in this paper

should not be construed as a case that closed-source development is intrinsically wrong, nor as a brief against

intellectual-property rights in software, nor as an altruistic appeal to `share'. While these arguments are

still beloved of a vocal minority in the open-source development community, experience since 16 () has

made it clear that they are unnecessary. An entirely su�cient case for open-source development rests on its

engineering and economic outcomes � better quality, higher reliability, lower costs, and increased choice.)



3. The Manufacturing Delusion 3

3 The Manufacturing Delusion

We need to begin by noticing that computer programs like all other kinds of tools or capital goods, have two

distinct kinds of economic value. They have use value and sale value.

The use value of a program is its economic value as a tool. The sale value of a program is its value as a

salable commodity. (In professional economist-speak, sale value is value as a �nal good, and use value is

value as an intermediate good.)

When most people try to reason about software-production economics, they tend to assume a `factory model'

that is founded on the following fundamental premises.

1. Most developer time is paid for by sale value.

2. The sale value of software is proportional to its development cost (i.e. the cost of the resources required

to functionally replicate it) and to its use value.

In other words, people have a strong tendency to assume that software has the value characteristics of a

typical manufactured good. But both of these assumptions are demonstrably false.

First, code written for sale is only the tip of the programming iceberg. In the pre-microcomputer era it used

to be a commonplace that 90% of all the code in the world was written in-house at banks and insurance

companies. This is probably no longer the case � other industries are much more software-intensive now,

and the �nance industry's share of the total has accordingly dropped � but we'll see shortly that there is

empirical evidence that around 95% of code is still written in-house.

This code includes most of the stu� of MIS, the �nancial- and database-software customizations every

medium and large company needs. It includes technical-specialist code like device drivers (almost nobody

makes money selling device drivers, a point we'll return to later on). It includes all kinds of embedded code

for our increasingly microchip-driven machines - from machine tools and jet airliners to cars to microwave

ovens and toasters.

Most such in-house code is integrated with its environment in ways that make reusing or copying it very

di�cult. (This is true whether the `environment' is a business o�ce's set of procedures or the fuel-injection

system of a combine harvester.) Thus, as the environment changes, there is a lot of work continually needed

to keep the software in step.

This is called `maintenance', and any software engineer or systems analyst will tell you that it makes up the

vast majority (more than 75%) of what programmers get paid to do. Accordingly, most programmer-hours

are spent (and most programmer salaries are paid for) writing or maintaining in-house code that has no

sale value at all � a fact the reader may readily check by examining the listings of programming jobs in any

newspaper with a `Help Wanted' section.

Scanning the employment section of your local newspaper is an enlightening experiment which I urge the

reader to perform for him- or herself. Examine the jobs listings under programming, data processing,

and software engineering for positions that involve the development of software. Categorize each such job

according to whether the software is being developed for use or for sale.

It will quickly become clear that, even given the most inclusive de�nition of `for sale', at least nineteen in

twenty of the salaries o�ered are being funded strictly by use value (that is, value as an intermediate good).

This is our reason for believing that only 5% of the industry is sale-value-driven. Note, however, that the

rest of the analysis in this paper is relatively insensitive to this number; if it were 15% or even 20%, the

economic consequences would remain essentially the same.



3. The Manufacturing Delusion 4

(When I speak at technical conferences, I usually begin my talk by asking two questions: how many in the

audience are paid to write software, and for how many do their salaries depend on the sale value of software.

I generally get a forest of hands for the �rst question, few or none for the second, and considerable audience

surprise at the proportion.)

Second, the theory that the sale value of software is coupled to its development or replacement costs is even

more easily demolished by examining the actual behavior of consumers. There are many goods for which

a proportion of this kind actually holds (before depreciation) � food, cars, machine tools. There are even

many intangible goods for which sale value couples strongly to development and replacement cost � rights

to reproduce music or maps or databases, for example. Such goods may retain or even increase their sale

value after their original vendor is gone.

By contrast, when a software product's vendor goes out of business (or if the product is merely discontinued),

the maximum price consumers will pay for it rapidly goes to near zero regardless of its theoretical use value

or the development cost of a functional equivalent. (To check this assertion, examine the remainder bins at

any software store near you.)

The behavior of retailers when a vendor folds is very revealing. It tells us that they know something the

vendors don't. What they know is this: the price a consumer will pay is e�ectively capped by the expected

future value of vendor service (where `service' is here construed broadly to include enhancements, upgrades,

and follow-on projects).

In other words, software is largely a service industry operating under the persistent but unfounded delusion

that it is a manufacturing industry.

It is worth examining why we normally tend to believe otherwise. It may simply be because the small portion

of the software industry that manufactures for sale is also the only part that advertises its product. Also,

some of the most visible and heavily advertised products are ephemera like games that have little in the way

of continuing service requirements (the exception, rather than the rule) 16 ().

It is also worth noting that the manufacturing delusion encourages price structures that are pathologically

out of line with the actual breakdown of development costs. If (as is generally accepted) over 75% of a typical

software project's life-cycle costs will be in maintenance and debugging and extensions, then the common

price policy of charging a high �xed purchase price and relatively low or zero support fees is bound to lead

to results that serve all parties poorly.

Consumers lose because, even though software is a service industry, the incentives in the factory model all

cut against a vendor's o�ering competent service. If the vendor's money comes from selling bits, most e�ort

will go to making bits and shoving them out the door; the help desk, not a pro�t center, will become a

dumping ground for the least e�ective and get only enough resources to avoid actively alienating a critical

number of customers.

The other side of this coin is that most vendors buying this factory model will also fail in the longer

run. Funding inde�nitely-continuing support expenses from a �xed price is only viable in a market that is

expanding fast enough to cover the support and life-cycle costs entailed in yesterday's sales with tomorrow's

revenues. Once a market matures and sales slow down, most vendors will have no choice but to cut expenses

by orphaning the product.

Whether this is done explicitly (by discontinuing the product) or implicitly (by making support hard to

get), it has the e�ect of driving customers to competitors (because it destroys the product's expected future

value, which is contingent on that service). In the short run, one can escape this trap by making bug-�x

releases pose as new products with a new price attached, but consumers quickly tire of this. In the long run,



4. The �information wants to be free� Myth 5

therefore, the only way to escape is to have no competitors � that is, to have an e�ective monopoly on one's

market. In the end, there can be only one.

And, indeed, we have repeatedly seen this support-starvation failure mode kill o� even strong second-place

competitors in a market niche. (The pattern should be particularly clear to anyone who has ever surveyed

the history of proprietary PC operating systems, word processors, accounting programs or business software

in general.) The perverse incentives set up by the factory model lead to a winner-take-all market dynamic

in which even the winner's customers end up losing.

If not the factory model, then what? To handle the real cost structure of the software life-cycle e�ciently

(in both the informal and economics-jargon senses of `e�ciency'), we require a price structure founded on

service contracts, subscriptions, and a continuing exchange of value between vendor and customer. Under

the e�ciency-seeking conditions of the free market, therefore, we can predict that this is the sort of price

structure most of a mature software industry will ultimately follow.

The foregoing begins to give us some insight into why open-source software increasingly poses not merely

a technological but an economic challenge to the prevailing order. The e�ect of making software `free', it

seems, is to force us into that service-fee-dominated world � and to expose what a relatively weak prop the

sale value of closed-source bits was all along.

The term `free' is misleading in another way as well. Lowering the cost of a good tends to increase, rather

than decrease, total investment in the infrastructure that sustains it. When the price of cars goes down,

the demand for auto mechanics goes up � which is why even those 5% of programmers now compensated

by sale-value would be unlikely to su�er in an open-source world. The people who lose in the transition

won't be programmers, they will be investors who have bet on closed-source strategies where they're not

appropriate.

4 The �information wants to be free� Myth

There is another myth, equal and opposite to the factory-model delusion, which often confuses peoples'

thinking about the economics of open-source software. It is that �information wants to be free�. This usually

unpacks to a claim that the zero marginal cost of reproducing digital information implies that its clearing

price ought to be zero.

The most general form of this myth is readily exploded by considering the value of information that con-

stitutes a claim on a rivalrous good � a treasure map, say, or a Swiss bank account number, or a claim on

services such as a computer account password. Even though the claiming information can be duplicated at

zero cost, the item being claimed cannot be. Hence, the non-zero marginal cost for the item can be inherited

by the claiming information.

We mention this myth mainly to assert that it is unrelated to the economic-utility arguments for open source;

as we'll see later, those would generally hold up well even under the assumption that software actually does

have the (nonzero) value structure of a manufactured good. We therefore have no need to tackle the question

of whether software `should' be free or not.



5. The Inverse Commons 6

5 The Inverse Commons

Having cast a skeptical eye on one prevailing model, let's see if we can build another � a hard-nosed economic

explanation of what makes open-source cooperation sustainable.

This is a question that bears examination on a couple of di�erent levels. On one level, we need to explain

the behavior of individuals who contribute to open-source projects; on another, we need to understand the

economic forces that sustain cooperation on open-source projects like Linux or Apache.

Again, we must �rst demolish a widespread folk model that interferes with understanding. Over every

attempt to explain cooperative behavior there looms the shadow of Garret Hardin's Tragedy of the Commons.

Hardin famously asks us to imagine a green held in common by a village of peasants, who graze their cattle

there. But grazing degrades the commons, tearing up grass and leaving muddy patches, which re-grow their

cover only slowly. If there is no agreed-on (and enforced!) policy to allocate grazing rights that prevents

overgrazing, all parties' incentives push them to run as many cattle as quickly as possible, trying to extract

maximum value before the commons degrades into a sea of mud.

Most people have an intuitive model of cooperative behavior that goes much like this. It's not actually a

good diagnosis of the economic problems of open-source, which are free-rider (underprovision) rather than

congested-public-good (overuse). Nevertheless, it is the analogy I hear behind most o�-the-cu� objections.

The tragedy of the commons predicts only three possible outcomes. One is the sea of mud. Another is

for some actor with coercive power to enforce an allocation policy on behalf of the village (the communist

solution). The third is for the commons to break up as village members fence o� bits they can defend and

manage sustainably (the property-rights solution).

When people re�exively apply this model to open-source cooperation, they expect it to be unstable with

a short half-life. Since there's no obvious way to enforce an allocation policy for programmer time over

the internet, this model leads straight to a prediction that the commons will break up, with various bits

of software being taken closed-source and a rapidly decreasing amount of work being fed back into the

communal pool.

In fact, it is empirically clear that the trend is opposite to this. The breadth and volume of open-source

development (as measured by, for example, submissions per day at Metalab or announcements per day

at freshmeat.net) is steadily increasing. Clearly there is some critical way in which the �Tragedy of the

Commons� model fails to capture what is actually going on.

Part of the answer certainly lies in the fact that using software does not decrease its value. Indeed, widespread

use of open-source software tends to increase its value, as users fold in their own �xes and features (code

patches). In this inverse commons, the grass grows taller when it's grazed on.

Another part of the answer lies in the fact that the putative market value of small patches to a common

source base is hard to capture. Supposing I write a �x for an irritating bug, and suppose many people

realize the �x has money value; how do I collect from all those people? Conventional payment systems have

high enough overheads to make this a real problem for the sorts of micropayments that would usually be

appropriate.

It may be more to the point that this value is not merely hard to capture, in the general case it's hard to

even assign. As a thought experiment let us suppose that the Internet came equipped with the theoretically

ideal micropayment system � secure, universally accessible, zero-overhead. Now let's say you have written a

patch labeled �Miscellaneous Fixes to the Linux Kernel�. How do you know what price to ask? How would

a potential buyer, not having seen the patch yet, know what is reasonable to pay for it?



6. Reasons for Closing Source 7

What we have here is almost like a funhouse-mirror image of F.A. Hayek's `calculation problem' � it would

take a superbeing, both able to evaluate the functional worth of patches and trusted to set prices accordingly,

to lubricate trade.

Unfortunately, there's a serious superbeing shortage, so patch author J. Random Hacker is left with two

choices: sit on the patch, or throw it into the pool for free. The �rst choice gains nothing. The second

choice may gain nothing, or it may encourage reciprocal giving from others that will address some of J.

Random's problems in the future. The second choice, apparently altruistic, is actually optimally sel�sh in a

game-theoretic sense.

In analyzing this kind of cooperation, it is important to note that while there is a free-rider problem (work

may be underprovided in the absence of money or money-equivalent compensation) it is not one that scales

with the number of end-users. The complexity and communications overhead of an open-source project is

almost entirely a function of the number of developers involved; having more end-users who never look at

source costs e�ectively nothing. It may increase the rate of silly questions appearing on the project mailing

lists, but this is relatively easily forestalled by maintaining a Frequently Asked Questions list and blithely

ignoring questioners who have obviously not read it (and in fact both these practices are typical).

The real free-rider problems in open-source software are more a function of friction costs in submitting

patches than anything else. A potential contributor with little stake in the cultural reputation game (see 16

()) may, in the absence of money compensation, think �It's not worth submitting this �x because I'll have

to clean up the patch, write a ChangeLog entry, and sign the FSF assignment papers...�. It's for this reason

that the number of contributors (and, at second order, the success of) projects is strongly and inversely

correlated with the number of hoops each project makes a user go through to contribute. Such friction costs

may be political as well as mechanical. Together they may explain why the loose, amorphous Linux culture

has attracted orders of magnitude more cooperative energy than the more tightly organized and centralized

BSD e�orts and why the Free Software Foundation has receded in relative importance as Linux has risen.

This is all good as far as it goes. But it is an after-the-fact explanation of what J. Random Hacker does

with his patch after he has it. The other half we need is an economic explanation of how JRH was able

to write that patch in the �rst place, rather than having to work on a closed-source program that might

have returned him sale value. What business models create niches in which open-source development can

�ourish?

6 Reasons for Closing Source

Before taxonomizing open-source business models, we should deal with exclusion payo�s in general. What

exactly are we protecting when we close source?

Let's say you hire someone to write to order (say) a specialized accounting package for your business. That

problem won't be solved any better if the sources are closed rather than open; the only rational reasons

you might want them to be closed is if you want to sell the package to other people, or deny its use to

competitors.

The obvious answer is that you're protecting sale value, but for the 95% of software written for internal use

this doesn't apply. So what other gains are there in being closed?

That second case (protecting competitive advantage) bears a bit of examination. Suppose you open-source

that accounting package. It becomes popular and bene�ts from improvements made by the community.

Now, your competitor also starts to use it. The competitor gets the bene�t without paying the development



7. Use-Value Funding Models 8

cost and cuts into your business. Is this an argument against open-sourcing?

Maybe � and maybe not. The real question is whether your gain from spreading the development load

exceeds your loss due to increased competition from the free rider. Many people tend to reason poorly about

this tradeo� through (a) ignoring the functional advantage of recruiting more development help. (b) not

treating the development costs as sunk, and By hypothesis, you had to pay th development costs anyway, so

counting them as a cost of open-sourcing (if you choose to do) is mistaken.

There are other reasons for closing source that are outright irrational. You might, for example, be laboring

under the delusion that closing the sources will make your business systems more secure against crackers and

intruders. If so, I recommend therapeutic conversation with a cryptographer immediately. The really profes-

sional paranoids know better than to trust the security of closed-source programs, because they've learned

through hard experience not to. Security is an aspect of reliability; only algorithms and implementations

that have been thoroughly peer-reviewed can possibly be trusted to be secure.

7 Use-Value Funding Models

A key fact that the distinction between use and sale value allows us to notice is that only sale value is

threatened by the shift from closed to open source; use value is not.

If use value rather than sale value is really the major driver of software development, and (as was argued in

16 ()) open-source development is really more e�ective and e�cient than closed, then we should expect to

�nd circumstances in which expected use value alone sustainably funds open-source development.

And in fact it is not di�cult to identify at least two important models in which full-time developer salaries

for open-source projects are funded strictly out of use value.

7.1 The Apache case: cost-sharing

Let's say you work for a �rm that has a business-critical requirement for a high-volume, high-reliability web

server. Maybe it's for electronic commerce, maybe you're a high-visibility media outlet selling advertising,

maybe you're a portal site. You need 24/7 uptime, you need speed, and you need customizability.

How are you going to get these things? There are three basic strategies you can pursue:

Buy a proprietary webserver. In this case, you are betting that the vendor's agenda matches yours and that

the vendor has the technical competence to implement properly. Even assuming both these things to be

true, the product is likely to come up short in customizability; you will only be able to modify it through

the hooks the vendor has chosen to provide. This proprietary-webserver path is not a popular one.

Roll your own. Building your own webserver is not an option to dismiss instantly; webservers are not very

complex, certainly less so than browsers, and a specialized one can be very lean and mean. Going this path,

you can get the exact features and customizability you want, though you'll pay for it in development time.

Your �rm may also �nd it has a problem when you retire or leave.

Join the Apache group. The Apache server was built by an Internet-connected group of webmasters who

realized that it was smarter to pool their e�orts into improving one code base than to run a large number

of parallel development e�orts. By doing this they were able to capture both most of the advantages of

roll-your-own and the powerful debugging e�ect of massively-parallel peer review.



8. Why Sale Value is Problematic 9

The advantage of the Apache choice is very strong. Just how strong, we may judge from the monthly Netcraft

survey, which has shown Apache steadily gaining market share against all proprietary webservers since its

inception. As of June 1999, Apache and its derivatives have 61% market share <http://www.netcraft.

com/survey/> � with no legal owner, no promotion, and no contracted service organization behind them at

all.

The Apache story generalizes to a model in which software users �nd it to their advantage to fund open-

source development because doing so gets them a better product than they could otherwise have, at lower

cost.

7.2 The Cisco case: risk-spreading

Some years ago, two programmers at Cisco (the networking-equipment manufacturer) got assigned the job of

writing a distributed print-spooling system for use on Cisco's corporate network. This was quite a challenge.

Besides supporting the ability for arbitrary user A to print at arbitrary printer B (which might be in the next

room or a thousand miles away), the system had to make sure that in the event of a paper-out or toner-low

condition the job would get rerouted to an alternate printer near the target. The system also needed to be

able to report such problems to a printer administrator.

The duo came up with a clever set of modi�cations to the standard Unix print-spooler software, plus some

wrapper scripts, that did the job. Then they realized that they, and Cisco, had a problem.

The problem was that neither of them was likely to be at Cisco forever. Eventually, both programmers

would be gone, and the software would be unmaintained and begin to rot (that is, to gradually fall out of

sync with real-world conditions). No developer likes to see this happen to his or her work, and the intrepid

duo felt Cisco had paid for a solution under the not unreasonable expectation that it would outlast their

own jobs there.

Accordingly, they went to their manager and urged him to authorize the release of the print spooler software

as open source. Their argument was that Cisco would have no sale value to lose, and much else to gain. By

encouraging the growth of a community of users and co-developers spread across many corporations, Cisco

could e�ectively hedge against the loss of the software's original developers.

The Cisco story generalizes to a model in which open source functions not so much to lower costs as to

spread risk. All parties �nd that the openness of the source, and the presence of a collaborative community

funded by multiple independent revenue streams, provides a fail-safe that is itself economically valuable �

su�ciently valuable to drive funding for it.

8 Why Sale Value is Problematic

Open source makes it rather di�cult to capture direct sale value from software. The di�culty is not technical;

source code is no more nor less copyable than binaries, and the enforcement of copyright and license laws

permitting capture of sale value would not by necessity be any more di�cult for open-source products than

it is for closed.

The di�culty lies rather with the nature of the social contract that supports open-source development. For

three mutually reinforcing reasons, the major open-source licenses prohibit most of the sort of restrictions

on use, redistribution and modi�cation that would facilitate direct-sale revenue capture. To understand



9. Indirect Sale-Value Models 10

these reasons. we must examine the social context within which the licenses evolved; the Internet hacker

<http://www.tuxedo.org/~esr/faqs/hacker-howto.html> culture.

Despite myths about the hacker culture still (in 1999) widely believed outside it, none of these reasons has to

do with hostility to the market. While a minority of hackers does indeed remain hostile to the pro�t motive,

the general willingness of the community to cooperate with for-pro�t Linux packagers like Red Hat, SUSE,

and Caldera demonstrates that most hackers will happily work with the corporate world when it serves their

ends. The real reasons hackers frown on direct-revenue-capture licenses are more subtle and interesting.

One reason has to do with symmetry. While most open-source developers do not intrinsically object to others

pro�ting from their gifts, most also demand that no party (with the possible exception of the originator of

a piece of code) be in a privileged position to extract pro�ts. J. Random Hacker is willing for Fubarco to

pro�t by selling his software or patches, but only so long as JRH himself could also potentially do so.

Another has to do with unintended consequences. Hackers have observed that licenses that include restric-

tions on and fees for `commercial' use or sale (the most common form of attempt to recapture direct sale

value, and not at �rst blush an unreasonable one) have serious chilling e�ects. A speci�c one is to cast a legal

shadow on activities like redistribution in inexpensive CD-ROM anthologies, which we would ideally like to

encourage. More generally, restrictions on use/sale/modi�cation/distribution (and other complications in

licensing) exact an overhead for conformance tracking and (as the number of packages people deal with

rises) a combinatorial explosion of perceived uncertainty and potential legal risk. This outcome is considered

harmful, and there is therefore strong social pressure to keep licenses simple and free of restrictions.

The �nal and most critical reason has to do with preserving the peer-review, gift-culture dynamic described

in 16 (). License restrictions designed to protect intellectual property or capture direct sale value often have

the e�ect of making it legally impossible to fork the project (this is the case, for example, with Sun's so-called

"Community Source" licenses for Jini and Java). While forking is frowned upon and considered a last resort

(for reasons discussed at length in 16 ()), it's considered critically important that that last resort be present

in case of maintainer incompetence or defection (e.g. to a more closed license).

The hacker community has some give on the symmetry reason; thus, it tolerates licenses like Netscape's NPL

that give some pro�t privileges to the originators of the code (speci�cally in the NPL case, the exclusive

right to use the open-source Mozilla code in derivative products including closed source). It has less give

on the unintended-consequences reason, and none on preserving the option to fork (which is why Sun's Java

and Jini `Community License' schemes have been largely rejected by the community).

These reasons explain the clauses of the Open Source De�nition, which was written to express the consensus

of the hacker community about the critical features of the standard licenses (the GPL, the BSD license, the

MIT License, and the Artistic License). These clauses have the e�ect (though not the intention) of making

direct sale value very hard to capture.

9 Indirect Sale-Value Models

Nevertheless, there are ways to make markets in software-related services that capture something like indirect

sale value. There are �ve known and two speculative models of this kind (more may be developed in the

future).



9. Indirect Sale-Value Models 11

9.1 Loss-Leader/Market Positioner

In this model, you use open-source software to create or maintain a market position for proprietary software

that generates a direct revenue stream. In the most common variant, open-source client software enables

sales of server software, or subscription/advertising revenue associated with a portal site.

Netscape Communications, Inc. was pursuing this strategy when it open-sourced the Mozilla browser in

early 1998. The browser side of their business was at 13% of revenues and dropping when Microsoft �rst

shipped Internet Explorer. Intensive marketing of IE (and shady bundling practices that would later become

the central issue of an antitrust lawsuit) quickly ate into Netscape's browser market share, creating concern

that Microsoft intended to monopolize the browser market and then use de-facto control of HTML to drive

Netscape out of the server market.

By open-sourcing the still-widely-popular Netscape browser, Netscape e�ectively denied Microsoft the pos-

sibility of a browser monopoly. They expected that open-source collaboration would accelerate the develop-

ment and debugging of the browser, and hoped that Microsoft's IE would be reduced to playing catch-up

and prevented from exclusively de�ning HTML.

This strategy worked. In November 1998 Netscape actually began to regain business-market share from IE.

By the time Netscape was acquired by AOL in early 1999, the competitive advantage of keeping Mozilla

in play was su�ciently clear that one of AOL's �rst public commitments was to continue supporting the

Mozilla project, even though it was still in alpha stage.

9.2 Widget Frosting

This model is for hardware manufacturers (hardware, in this context, includes anything from Ethernet or

other peripheral boards all the way up to entire computer systems). Market pressures have forced hardware

companies to write and maintain software (from device drivers through con�guration tools all the way up to

the level of entire operating systems), but the software itself is not a pro�t center. It's an overhead � often

a substantial one.

In this situation, opening source is a no-brainer. There's no revenue stream to lose, so there's no downside.

What the vendor gains is a dramatically larger developer pool, more rapid and �exible response to customer

needs, and better reliability through peer review. It gets ports to other environments for free. It probably

also gains increased customer loyalty as its customers' technical sta�s put increasing amounts of time into

the code to do the customizations they require.

There are a couple of vendor objections commonly raised speci�cally to open-sourcing hardware drivers.

Rather than mix them with discussion of more general issues here, I have written an 17 (appendix) speci�cally

on this topic.

The `future-proo�ng' e�ect of open source is particularly strong with respect to widget frosting. Hardware

products have a �nite production and support lifetime; after that, the customers are on their own. But if

they have access to driver source and can patch them as needed, they're more likely to be happier repeat

customers of the same company.

A very dramatic example of adopting the widget frosting model was Apple Computer's decision in mid-March

1999 to open-source "Darwin", the core of their MacOSX server operating system.



9. Indirect Sale-Value Models 12

9.3 Give Away the Recipe, Open A Restaurant

In this model, one open-sources software to create a market position not for closed software (as in the

Loss-Leader/Market-Positioner case) but for services.

(I used to call this `Give Away the Razor, Sell Razor Blades', The coupling is not really as tight as the

razor/razor-blade analogy implies.)

This is what Red Hat and other Linux distributors do. What they are actually selling is not the software,

the bits itself, but the value added by assembling and testing a running operating system that is warranted

(if only implicitly) to be merchantable and to be plug-compatible with other operating systems carrying the

same brand. Other elements of their value proposition include free installation support and the provision of

options for continuing support contracts.

The market-building e�ect of open source can be extremely powerful, especially for companies which are

inevitably in a service position to begin with. One very instructive recent case is Digital Creations, a website-

design house started up in 1998 that specializes in complex database and transaction sites. Their major tool,

the intellectual-property crown jewels of the company, is an object publisher that has been through several

names and incarnations but is now called Zope.

When the Digital Creations people went looking for venture capital, the VC they brought in carefully

evaluated their prospective market niche, their people, and their tools. He then recommended that Digital

Creations take Zope to open source.

By traditional software-industry standards, this looks like an absolutely crazy move. Conventional business-

school wisdom has it that core intellectual property like Zope is a company's crown jewels, never under any

circumstances to be given away. But the VC had two related insights. One is that Zope's true core asset

is actually the brains and skills of its people. The second is that Zope is likely to generate more value as a

market-builder than as a secret tool.

To see this, compare two scenarios. In the conventional one, Zope remains Digital Creations's secret weapon.

Let's stipulate that it's a very e�ective one. As a result, the �rm will able to deliver superior quality on

short schedules � but nobody knows that . It will be easy to satisfy customers, but harder to build a customer

base to begin with.

The VC, instead, saw that open-sourcing Zope could be critical advertising for Digital Creations's real asset

� its people. He expected that customers evaluating Zope would consider it more e�cient to hire the experts

than to develop in-house Zope expertise.

One of the Zope principals has since con�rmed very publicly that their open-source strategy has "opened

many doors we wouldn't have got in otherwise". Potential customers do indeed respond to the logic of the

situation � and Digital Creations, accordingly, is prospering.

Another up-to-the-minute example is e-smith, inc. <http://www.e-smith.net/>. This company sells sup-

port contracts for turnkey Internet server software that is open-source, a customized Linux. One of the prin-

cipals, describing the spread of free downloads of e-smith's software, says <http://www.globetechnology.

com/gam/News/19990625/BAND.html> �Most companies would consider that software piracy; we consider it

free marketing�.



9. Indirect Sale-Value Models 13

9.4 Accessorizing

In this model, you sell accessories for open-source software. At the low end, mugs and T-shirts; at the high

end, professionally-edited and produced documentation.

O'Reilly Associates, publishers of many excellent references volumes on open-source software, is a good

example of an accessorizing company. O'Reilly actually hires and supports well-known open-source hackers

(such as Larry Wall and Brian Behlendorf) as a way of building its reputation in its chosen market.

9.5 Free the Future, Sell the Present

In this model, you release software in binaries and source with a closed license, but one that includes

an expiration date on the closure provisions. For example, you might write a license that permits free

redistribution, forbids commercial use without fee, and guarantees that the software come under GPL terms

a year after release or if the vendor folds.

Under this model, customers can ensure that the product is customizable to their needs, because they have

the source. The product is future-proofed � the license guarantees that an open source community can take

over the product if the original company dies.

Because the sale price and volume are based on these customer expectations, the original company should

enjoy enhanced revenues from its product versus releasing it with an exclusively closed source license. Fur-

thermore, as older code is GPLed, it will get serious peer review, bug �xes, and minor features, which

removes some of the 75% maintainance burden on the originator.

This model has been successfully pursued by Aladdin Enterprises, makers of the popular Ghostscript program

(a PostScript interpreter that can translate to the native languages of many printers).

The main drawback of this model is that the closure provisions tend to inhibit peer review and participation

early in the product cycle, precisely when they are needed most.

9.6 Free the Software, Sell the Brand

This is a speculative business model. You open-source a software technology, retain a test suite or set

of compatibility criteria, then sell users a brand certifying that their implementation of the technology is

compatible with all others wearing the brand.

(This is how Sun Microsystems ought to be handling Java and Jini.)

9.7 Free the Software, Sell the Content

This is another speculative business model. Imagine something like a stock-ticker subscription service. The

value is neither in the client software nor the server but in providing objectively reliable information. So

you open-source all the software and sell subscriptions to the content. As hackers port the client to new

platforms and enhance it in various ways, your market automatically expands.

(This is why AOL ought to open-source its client software.)



10. When To Be Open, When To Be Closed 14

10 When To Be Open, When To Be Closed

Having reviewed business models that support open-source software development, we can now approach the

general question of when it makes economic sense to be open-source and when to be closed-source. First, we

must be clear what the payo�s are from each strategy.

10.1 What Are the Payo�s?

The closed-source approach allows you to collect rent from your secret bits; on the other hand, it forecloses the

possibility of truly independent peer review. The open-source approach sets up conditions for independent

peer review, but you don't get rent from your secret bits.

The payo� from having secret bits is well understood; traditionally, software business models have been

constructed around it. Until recently, the payo� from independent peer review was not well understood.

The Linux operating system, however, drives home a lesson that we should probably have learned years ago

from the history of the Internet's core software and other branches of engineering � that open-source peer

review is the only scalable method for achieving high reliability and quality.

In a competitive market, therefore, customers seeking high reliability and quality will reward software pro-

ducers who go open-source and discover how to maintain a revenue stream in the service, value-add, and

ancilliary markets associated with software. This phenomenon is what's behind the astonishing success of

Linux, which came from nowhere in 1996 to over 17% in the business server market by the end of 1998 and

seems on track to dominate that market within two years (in early 1999 IDC projected that Linux would

grow faster than all other operating systems combined through 2003).

An almost equally important payo� of open source is its utility as a way to propagate open standards and

build markets around them. The dramatic growth of the Internet owes much to the fact that nobody owns

TCP/IP; nobody has a proprietary lock on the core Internet protocols.

The network e�ects behind TCP/IP's and Linux's success are fairly clear and reduce ultimately to issues of

trust and symmetry � potential parties to a shared infrastructure can rationally trust it more if they can see

how it works all the way down, and will prefer an infrastructure in which all parties have symmetrical rights

to one in which a single party is in a privileged position to extract rents or exert control.

It is not, however, actually necessary to assume network e�ects in order for symmetry issues to be important

to software consumers. No software consumer will rationally choose to lock itself into a supplier-controlled

monopoly by becoming dependent on closed source if any open-source alternative of acceptable quality is

available. This argument gains force as the software becomes more critical to the software consumer's

business � the more vital it is, the less the consumer can tolerate having it controlled by an outside party.

Finally, an important customer payo� of open-source software related to the trust issue is that it's future-

proof. If sources are open, the customer has some recourse if the vendor goes belly-up. This may be

particularly important for widget frosting, since hardware tends to have short life cycles, but the e�ect is

more general and translates into increased value for open-source software.

10.2 How Do They Interact?

When the rent from secret bits is higher than the return from open source, it makes economic sense to be

closed-source. When the return from open source is higher than the rent from secret bits, it makes sense to

go open source.



10. When To Be Open, When To Be Closed 15

In itself, this is a trivial observation. It becomes nontrivial when we notice that the payo� from open source is

harder to measure and predict than the rent from secret bits � and that said payo� is grossly underestimated

much more often than it is overestimated. Indeed, until the mainstream business world began to rethink its

premises following the Mozilla source release in early 1998, the open-source payo� was incorrectly but very

generally assumed to be zero.

So how can we evaluate the payo� from open source? It's a di�cult question in general, but we can approach it

as we would any other predictive problem. We can start from observed cases where the open-source approach

has succeeded or failed. We can try to generalize to a model which gives at least a qualitative feel for the

contexts in which open source is a net win for the investor or business trying to maximize returns. We can

then go back to the data and try to re�ne the model.

From the analysis presented in 16 (), we can expect that open source has a high payo� where (a) reliabili-

ty/stability/scalability are critical, and (b) correctness of design and implementation is not readily veri�ed

by means other than independent peer review. (The second criterion is met in practice by most non-trivial

programs.)

A consumer's rational desire to avoid being locked into a monopoly supplier will increase its interest in open

source (and, hence, the competitive-market value for suppliers of going open) as the software becomes more

critical to that consumer. Thus, another criterion (c) pushes towards open source when the software is a

business-critical capital good (as, for example, in many corporate MIS departments).

As for application area, we observed above that open-source infrastructure creates trust and symmetry e�ects

that, over time, will tend to attract more customers and to outcompete closed-source infrastructure; and it

is often better to have a smaller piece of such a rapidly-expanding market than a bigger piece of a closed

and stagnant one. Accordingly, for infrastructure software, an open-source play for ubiquity is quite likely

to have a higher long-term payo� than a closed-source play for rent from intellectual property.

In fact, the ability of potential customers to reason about the future consequences of vendor strategies

and their reluctance to accept a supplier monopoly implies a stronger constraint; without already having

overwhelming market power, you can choose either an open-source ubiquity play or a direct-revenue-from-

closed-source play � but not both. (Analogues of this principle are visible elsewhere, e.g. in electronics

markets where customers often refuse to buy sole-source designs.) The case can be put less negatively:

where network e�ects (positive network externalities) dominate, open source is likely to be the right thing.

We may sum up this logic by observing that open source seems to be most successful in generating greater re-

turns than closed source in software that (d) establishes or enables a common computing and communications

infrastructure.

Finally, we may note that purveyors of unique or just highly di�erentiated services have more incentive to

fear copying of their methods by competitors than do vendors of services for which the critical algorithms

and knowledge bases are well understood. Accordingly, open source is more likely to dominate when (e) key

methods (or functional equivalents) are part of common engineering knowledge.

The Internet core software, Apache, and Linux's implementation of the ANSI-standard Unix API are prime

exemplars of all �ve criteria. The path towards open source in the evolution of such markets are well-

illustrated by the reconvergence of data networking on TCP/IP in the mid-1990s following �fteen years of

failed empire-building attempts with closed protocols such as DECNET, XNS, IPX, and the like.

On the other hand, open source seems to make the least sense for companies that have unique possession

of a value-generating software technology (strongly ful�lling criterion (e)) which is (a) relatively insensitive

to failure, which can (b) readily be veri�ed by means other than independent peer review, which is not



10. When To Be Open, When To Be Closed 16

(c) business-critical, and which would not have its value substantially increased by (d) network e�ects or

ubiquity.

As an example of this extreme case, in early 1999 I was asked "Should we go open source?" by a company

that writes software to calculate cutting patterns for sawmills that want to extract the maximum yardage of

planks from logs. My conclusion was �No.� The only criterion this comes even close to ful�lling is (c); but

at a pinch, an experienced operator could generate cut patterns by hand.

An important point is that where a particular product or technology sits on these scales may change over

time, as we'll see in the following case study.

In summary, the following discriminators push towards open source:

(a)

reliability/stability/scalability are critical

(b)

correctness of design and implementation cannot readily be veri�ed by means other than independent

peer review

(c)

the software is critical to the user's control of his/her business

(d)

the software establishes or enables a common computing and communications infrastructure

(e)

key methods (or functional equivalents of them) are part of common engineering knowledge.

10.3 Doom: A Case Study

The history of id software's best-selling game Doom illustrates ways in which market pressure and product

evolution can critically change the payo� magnitudes for closed vs. open source.

When Doom was �rst released in late 1993, its �rst-person, real-time animation made it utterly unique (the

antithesis of criterion (e)). Not only was the visual impact of the technique stunning, but for many months

nobody could �gure out how it had been achieved on the underpowered microprocessors of that time. These

secret bits were worth some very serious rent. In addition, the potential payo� from open source was low. As

a solo game, the software (a) incurred tolerably low costs on failure, (b) not tremendously hard to verify, (c)

not business-critical for any consumer, (d) did not bene�t from network e�ects. It was economically rational

for Doom to be closed source.

However, the market around Doom did not stand still. Would-be competitors invented functional equivalents

of its animation techniques, and other ��rst-person shooter� games like Duke Nukem began to appear. As

these games ate into Doom's market share the value of the rent from secret bits went down.

On the other hand, e�orts to expand that share brought on new technical challenges � better reliability, more

game features, a larger user base, and multiple platforms. With the advent of multiplayer `deathmatch' play

and Doom gaming services, the market began to display substantial network e�ects. All this was demanding

programmer-hours that id would have preferred to spend on the next game.



11. The Business Ecology of Open Source 17

All of these trends raised the payo� from opening the source. At some point the payo� curves crossed

over and it became economically rational for id to open up the Doom source and shift to making money in

secondary markets such as game-scenario anthologies. And sometime after this point, it actually happened.

The full source for Doom was released in late 1997.

10.4 Knowing When To Let Go

Doom makes an interesting case study because it is neither an operating system nor communication-

s/networking software; it is thus far removed from the usual and obvious examples of open-source success.

Indeed, Doom's life cycle, complete with crossover point, may be coming to typify that of applications soft-

ware in today's code ecology � one in which communications and distributed computation both create serious

robustness/reliability/scalability problems only addressible by peer review, and frequently cross boundaries

both between technical environments and between competing actors (with all the trust and symmetry issues

that implies).

Doom evolved from solo to deathmatch play. Increasingly, the network e�ect is the computation. Similar

trends are visible even in the heaviest business applications, such as ERPs, as businesses network ever more

intensively with suppliers and customers � and, of course, they are implicit in the whole architecture of the

World Wide Web. It follows that almost everywhere, the open-source payo� is steadily rising.

If present trends continue, the central challenge of software technology and product management in the next

century will be knowing when to let go � when to allow closed code to pass into the open-source infrastructure

in order to exploit the peer-review e�ect and capture higher returns in service and other secondary markets.

There are obvious revenue incentives not to miss the crossover point too far in either direction. Beyond

that, there's a serious opportunity risk in waiting too long � you could get scooped by a competitor going

open-source in the same market niche.

The reason this is a serious issue is that both the pool of users and the pool of talent available to be recruited

into open-source cooperation for any given product category is limited, and recruitment tends to stick. If

two producers are the �rst and second to open-source competing code of roughly equal function, the �rst is

likely to attract the most users and the most and best-motivated co-developers; the second will have to take

leavings. Recruitment tends to stick, as users gain familiarity and developers sink time investments in the

code itself.

11 The Business Ecology of Open Source

The open-source community has organized itself in a way that tends to amplify the productivity e�ects of

open source. In the Linux world, in particular, it's an economically signi�cant fact that there are multiple

competing Linux distributors which form a tier separate from the developers.

Developers write code, and make the code available over the Internet. Each distributor selects some subset

of the available code, integrates and packages and brands it, and sells it to customers. Users choose among

distributions, and may supplement a distribution by downloading code directly from developer sites.

The e�ect of this tier separation is to create a very �uid internal market for improvements. Developers com-

pete with each other, for the attention of distributors and users, on the quality of their software. Distributors

compete for user dollars on the appropriateness of their selection policies, and on the value they can add to

the software.



12. Coping With Success 18

A �rst-order e�ect of this internal market structure is that no node in the net is indispensible. Developers

can drop out; even if their portion of the code base is not picked up directly by some other developer, the

competition for attention will tend to rapidly generate functional alternatives. Distributors can fail without

damaging or compromising the common open-source code base. The ecology as a whole has a more rapid

response to market demands, and more capability to resist shocks and regenerate itself, than any monolithic

vendor of a closed-source operating system can possibly muster.

Another important e�ect is to lower overhead and increase e�ciency through specialization. Developers don't

experience the pressures that routinely compromise conventional closed projects and turn them into tar-pits

� no lists of pointless and distracting check-list features from Marketing, no management mandates to use

inappropriate and outdated languages or development environments, no requirement to re-invent wheels in

a new and incompatible way in the name of product di�erentiation or intellectual-property protection, and

(most importantly) no deadlines . No rushing a 1.0 out the door before it's done right � which (as DeMarco

and Lister observed in their discussion of the `wake me when it's over' management style in 16 ()) generally

conduces not only to higher quality but actually to the most rapid delivery of a truly working result.

Distributors, on the other hand, get to specialize in the things distributors can do most e�ectively. Freed of

the need to fund massive and ongoing software development just to stay competitive, they can concentrate

on system integration, packaging, quality assurance, and service.

Both distributors and developers are kept honest by the constant feedback from and monitoring by users

that is an integral part of the open-source method.

12 Coping With Success

The Tragedy of the Commons may not be applicable to open-source development as it happens today,

but that doesn't mean there are not any reasons to wonder if the present momentum of the open-source

community is sustainable. Will key players defect from cooperation as the stakes become higher?

There are several levels on which this question can be asked. Our `Comedy of the Commons' counter-story

is based on the argument that the value of individual contributions to open source is hard to monetize.

But this argument has much less force for �rms (like, say, Linux distributors) which already have a revenue

stream associated with open source. Their contribution is already being monetized every day. Is their present

cooperative role stable?

Examining this question will lead us to some interesting insights about the economics of open-source software

in the real world of present time � and about what a true service-industry paradigm implies for the software

industry in the future.

On the practical level, applied to the open-source community as it exists now, this question is usually posed

in one of two di�erent ways. One: will Linux fragment? Two: conversely, will Linux develop a dominant,

quasi-monopolistic player?

The historical analogy many people turn to when suggesting that Linux will fragment is the behavior of the

proprietary-Unix vendors in the 1980s. Despite endless talk of open standards, despite numerous alliances

and consortia and agreements, proprietary Unix fell apart. The vendors' desire to di�erentiate their products

by adding and modifying OS facilities proved stronger than their interest in growing the total size of the

Unix market by maintaining compatibility (and consequently lowering both entry barriers for independent

software developers and total cost of ownership for consumers).

This is quite unlikely to happen to Linux, for the simple reason that all the distributors are constrained to



13. Open R&D and the Reinvention of Patronage 19

operate from a common base of open source code. It's not really possible for any one of them to maintain

di�erentiation, because the licenses under which Linux code are developed e�ectively require them to share

code with all parties. The moment any distributor develops a feature, all competitors are free to clone it.

Since all parties understand this, nobody even thinks about doing the kinds of maneuvers that fragmented

proprietary Unix. Instead, Linux distributors are forced to compete in ways that actually bene�t the con-

sumer and the overall market. That is, they must compete on service, support, and their design bets on

what interfaces actually conduce to ease installation and use.

The common source base also forecloses the possibility of monopolization. When Linux people worry about

this, the name usually muttered is �Red Hat�, that of the largest and most successful of the distributors

(with somewhere around 90% estimated market share in the U.S.). But it is notable that within days after

the May 1999 announcement of Red Hat's long-awaited 6.0 release � before Red Hat's CD-ROMs actually

shipped in any quantity � CD-ROM images of the release built from Red Hat's own public FTP site were

being advertised by a book publisher and several other CD-ROM distributors at lower prices than Red Hat's

expected list.

Red Hat itself didn't turn a hair at this, because its founders understand very clearly that they do not and

cannot own the bits in their product; the social norms of the Linux community forbid that. In a latter-day

take on John Gilmore's famous observation that the Internet interprets censorship as damage and routes

around it, it has been aptly said that the hacker community responsible for Linux interprets attempts at

control as damage and routes around them. For Red Hat to have protested the pre-release cloning of its

newest product would have seriously compromised its ability to elicit future cooperation from its developer

community.

Perhaps more importantly in present time, the software licenses that express these community norms in a

binding legal form actively forbid Red Hat from monopolizing the sources of the code their product is based

on. The only thing they can sell is a brand/service/support relationship with people who are freely willing

to pay for that. This is not a context in which the possibility of a predatory monopoly looms very large.

13 Open R&D and the Reinvention of Patronage

There is one other respect in which the infusion of real money into the open-source world is changing it. The

community's stars are increasingly �nding they can get paid for what they want to do, instead of pursuing

open source as a hobby funded by another day job. Corporations like Red Hat, O'Reilly Associates, and

VA Linux Systems are building what amount to semi-independent research arms with charters to hire and

maintain stables of open-source talent.

This makes economic sense only if the cost per head of maintaining such a lab can easily be paid out

of the expected gains it will enable by growing the �rm's market faster. O'Reilly can a�ord to pay the

principal authors of Perl and Apache to do their thing because it expects their e�orts will enable it to sell

more Perl- and Apache-related books. VA Linux Systems can fund its laboratory branch because improving

Linux boosts the use value of the workstations and servers it sells. And Red Hat funds Red Hat Advanced

Development Labs to increase the value of its Linux o�ering and attract more customers.

To strategists from more traditional sectors of the software industry, reared in cultures that regard patent-

or trade-secret-protected intellectual property as the corporate crown jewels, this behavior may (despite

its market-growing e�ect) seem inexplicable. Why fund research that every one of your competitors is (by

de�nition) free to appropriate at no cost?



14. Getting There From Here 20

There seem to be two controlling reasons. One is that as long as these companies remain dominant players

in their market niches, they can expect to capture a proportional lion's share of the returns from the open

R&D. Using R&D to buy future pro�ts is hardly a novel idea; what's interesting is the implied calculation

that the expected future gains are su�ciently large that these companies can readily tolerate free riders.

While this obvious expected-future-value analysis is a necessary one in a world of hard-nosed capitalists

keeping their eyes on ROI, it is not actually the most interesting mode of explanation for star-hiring, because

the �rms themselves advance a fuzzier one. They will tell you if asked that they are simply doing the right

thing by the community they come from. Your humble author is su�ciently well-acquainted with principals

at all three of the �rms cited above to testify that these protestations cannot be dismissed as humbug.

Indeed, I was personally recruited onto the board of VA Linux Systems in late 1998 explicitly so that I would

be available to advise them on �the right thing�, and have found them far from unwilling to listen when I

did so.

An economist is entitled to ask what payo� is involved here. If we accept that talk of doing the right thing

is not empty posturing, we should next inquire what self-interest of the �rm the "right thing" serves. Nor is

the answer, in itself, either surprising or di�cult to verify by asking the right questions. As with super�cially

altruistic behavior in other industries, what these �rms actually believe they're buying is goodwill.

Working to earn goodwill, and valuing it as an asset predictive of future market gains, is hardly novel either.

What's interesting is the extremely high valuation that the behavior of these �rms suggest they put on that

goodwill. They're demonstrably willing to hire expensive talent for projects that are not direct revenue

generators even during the most capital-hungry phases of the runup to IPO. And, at least so far, the market

has actually rewarded this behavior.

The principals of these companies themselves are quite clear about the reasons that goodwill is especially

valuable to them. They rely heavily on volunteers among their customer base both for product development

and as an informal marketing arm. Their relationship with their customer base is intimate, often relying on

personal trust bonds between individuals within and outside the �rm.

These observations reinforce a lesson we learned earlier from a di�erent line of reasoning. The relationship

between Red Hat/VA/O'Reilly and their customers/developers is not one typical of manufacturing �rms.

Rather, it carries to an interesting extreme patterns that are characteristic of knowledge-intensive service

industries. Looking outside the technology industry, we can see these patterns in (for example) law �rms,

medical practices, and universities.

We may observe, in fact, that open-source �rms hire star hackers for much the same reasons that universities

hire star academics. In both cases, the practice is similar in mechanism and e�ect to the system of aristocratic

patronage that funded most �ne art until after the Industrial Revolution � a similarity some parties to it are

fully aware of.

14 Getting There From Here

The market mechanisms for funding (and making a pro�t from!) open-source development are still evolving

rapidly. The business models we've reviewed in this paper probably will not be the last to be invented.

Investors are still thinking through the consequences of reinventing the software industry as one with an

explicit focus on service rather than closed intellectual property, and will be for some time to come.

This conceptual revolution will have some cost in foregone pro�ts for people investing in the sale-value 5% of

the industry; historically, service businesses are not as lucrative as manufacturing businesses (though as any



15. Conclusion: Life After The Revolution 21

doctor or lawyer could tell you, the return to the actual practitioners is often higher). Any foregone pro�ts,

however, will be more than matched by bene�ts on the cost side, as software consumers reap tremendous sav-

ings and e�ciencies from open-source products. (There's a parallel here to the e�ects that the displacement

of the traditional voice-telephone network by the Internet is having everywhere).

The promise of these savings and e�ciencies is creating a market opportunity that entrepreneurs and venture

capitalists are now moving in to exploit. As the �rst draft of this paper was in preparation, Silicon Valley's

most prestigious venture-capital �rm took a lead stake in the �rst startup company to specialize in 24/7

Linux technical support. It is generally expected that several Linux- and open-source-related IPOs will be

�oated before the end of 1999 � and that they will be quite successful.

Another very interesting development is the beginnings of systematic attempts to make task market-

s in open-source development. SourceXchange <http://www.sourcexchange.com/process.html> and

CoSource <http://www.cosource.com/> represent slightly di�erent ways of trying to apply a reverse-auction

model to funding open-source development.

The overall trends are clear. We mentioned before IDC's projection that Linux will grow faster than all other

operating systems combined through 2003. Apache is at 61% market share and rising steadily. Internet usage

is exploding, and surveys such as the Internet Operating System Counter show that Linux and other open-

source operating systems are already a plurality on Internet hosts and steadily gaining share against closed

systems. The need to exploit open-source Internet infrastructure increasingly conditions not merely the

design of other software but the business practices and software use/purchase patterns of every corporation

there is. These trends, if anything, seem likely to accelerate.

15 Conclusion: Life After The Revolution

What will the world of software look like once the open-source transition is complete?

For purposes of examining this question, it will be helpful to sort kinds of software by the degree of com-

pleteness which the service they o�er is describable by open technical standards, which is well correlated

with how commoditized the underlying service has become.

This axis corresponds reasonably well to what people are normally thinking when they speak of `applications'

(not at all commoditized, weak or nonexistent open technical standards), `infrastructure' (commoditized

services, strong standards), and `middleware' (partially commoditized, e�ective but incomplete technical

standards). The paradigm cases today in 1999 would be a word processor (application), a TCP/IP stack

(infrastructure), and a database engine (middleware).

The payo� analysis we did earlier suggests that infrastructure, applications, and middleware will be trans-

formed in di�erent ways and exhibit di�erent equilibrium mixes of open and closed source. We recall that

it also suggested the prevalence of open source in a particular software area would be a function of whether

substantial network e�ects operate there, what the costs of failure are, and to what extent the software is a

business-critical capital good.

We can venture some predictions if we apply these heuristics not to individual products but to entire segments

of the software market. Here we go:

Infrastructure (the Internet, the Web, operating systems, and the lower levels of communications software

that has to cross boundaries between competing parties) will be almost all open source, cooperatively main-

tained by user consortia and by for-pro�t distribution/service out�ts with a role like that of Red Hat today.



16. Bibliography and Acknowledgements 22

Applications, on the other hand, will have the most tendency to remain closed. There will be circumstances

under which the use value of an undisclosed algorithm or technology will be high enough (and the costs

associated with unreliability will be low enough, and the risks associated with a supplier monopoly su�ciently

tolerable) that consumers will continue to pay for closed software. This is likeliest to remain true in standalone

vertical-market applications where network e�ects are weak. Our lumber-mill example earlier is one such;

biometric identi�cation software seems likeliest, of 1999's hot prospects, to be another.

Middleware (like databases, development tools, or the customized top ends of application protocol stacks)

will be more mixed. Whether middleware categories tend to go closed or open seems likely to depend on the

cost of failures, with higher cost creating market pressure for more openness.

To complete the picture, however, we need to notice that neither `applications' nor `middleware' are really

stable categories. In `Knowing When To Let Go' above we saw that individual software technologies seem

to go through a natural life cycle from rationally closed to rationally open. The same logic applies in the

large.

Applications tend to fall into middleware as standardized techniques develop and portions of the service

becomes commoditized. (Databases, for example, became middleware after SQL decoupled front ends from

engines.) As middleware services become commoditized, they will in turn tend to fall into the open-source

infrastructure � a transition we're seeing in operating systems right now.

In a future that includes competition from open source, we can expect that the eventual destiny of any

software technology will be to either die or become part of the open infrastructure itself. While this is hardly

happy news for entrepreneurs who would like to collect rent on closed software forever, it does suggest that

the software industry as a whole will remain entrepreneurial, with new niches constantly opening up at the

upper (application) end and a limited lifespan for closed-IP monopolies as their product categories fall into

infrastructure.

Finally, of course, this equilibrium will be great for the software consumer driving the process. More and more

high-quality software will become permanently available to use and build on instead of being discontinued

or locked in somebody's vault. Ceridwen's magic cauldron is, �nally, too weak a metaphor � because food

is consumed or decays, whereas software sources potentially last forever. The free market, in its widest

libertarian sense including all un-coerced activity whether trade or gift, can produce perpetually increasing

software wealth for everyone.

16 Bibliography and Acknowledgements

[CatB] The Cathedral and the Bazaar <http://www.tuxedo.org/~esr/writings/cathedral-bazaar/>

[HtN] Homesteading the Noosphere <http://www.tuxedo.org/~esr/writings/homesteading/>

[DL] De Marco and Lister, Peopleware: Productive Projects and Teams (New York; Dorset House, 1987;

ISBN 0-932633-05-6)

[SH] Shawn Hargreaves has written a good analysis of the applicability of open-source methods to games;

Playing the Open Source Game <http://www.talula.demon.co.uk/games.html>.

Several stimulating discussions with David D. Friedman helped me re�ne the `inverse commons' model

of open-source cooperation. I am also indebted to Marshall van Alstyne for pointing out the conceptual

importance of rivalrous information goods. Ray Ontko of the Indiana Group supplied helpful criticism. A

good many people in audiences before whom I gave talks in the year leading up to June 1999 also helped; if



17. Appendix: Why Closing Drivers Loses A Vendor Money 23

you're one of those, you know who you are.

It's yet another testimony to the open-source model that this paper was substantially improved by email

feedback I received within days after release. Lloyd Wood pointed out the importance of open-source software

being `future-proof'. and Doug Dante reminded me of the `Free the Future' business model. A question

from Adam Moorhouse led to the discussion of exclusion payo�s. Lionel Oliviera Gresse gave me a better

name for one of the business models. Stephen Turnbull slapped me silly about careless handling of free-rider

e�ects.

17 Appendix: Why Closing Drivers Loses A Vendor Money

Manufacturers of peripheral hardware (Ethernet cards, disk controllers, video board and the like) have

historically been reluctant to open up. This is changing now, with players like Adaptec and Cyclades

beginning to routinely disclose speci�cations and driver source code for their boards. Nevertheless, therere's

still resistance out there. In this appendix we attempt to dispel several of the economic misconceptions that

sustain it.

If you are a hardware vendor, you may fear open-sourcing may reveal important things about how your

hardware operates that competitors could copy, thus gaining an unfair competitive advantage. Back in the

days of three- to �ve-year product cycles this was a valid argument. Today, the time your competitors'

engineers would need to spend copying and understanding the copy is a substantial portion of the product

cycle, time they are not spending innovating or di�erentiating their own product. Plagiarism is a trap you

want your competitors to fall into.)

In any case, these details don't stay hidden for long these days. Hardware drivers are not like operating sys-

tems or applications; they're small, easy to disassemble, and easy to clone. Even teenage novice programmers

can do this � and frequently do.

There are literally thousands of Linux and FreeBSD programmers out there with both the capability and

the motivation to build drivers for a new board. For many classes of device that have relatively simple

interfaces and well-known standards (such as disk controllers and network cards) these eager hackers can

often prototype a driver as almost rapidly as your own shop could, even without documentation and without

disassembling an existing driver.

Even for tricky devices like video cards, there is not much you can do to thwart a clever programmer armed

with a disassembler. Costs are low and legal barriers are porous; Linux is an international e�ort and there

is always a jurisdiction in which reverse-engineering will be legal.

For hard evidence that all these claims are true, examine the list of devices supported in the Linux kernel or in

the driver subtrees of sites like Metalab <http://metalab.unc.edu/pub/Linux/hardware/!INDEX.html>,

and notice the rate at which new ones are added.

The message? Keeping your driver secret looks attractive in the short run, but is probably bad strategy in

the long run (certainly when you're competing with other vendors that are already open). But if you must

do it, burn the code into an onboard ROM. Then publish the interface to it. Go open as much as possible, to

build your market and demonstrate to potentional customers that you believe in your capacity to out-think

and out-innovate competitors where it matters.

If you stay closed you will usually get the worst of all worlds � your secrets will get exposed, you won't

get free development help, and you won't have wasted your stupider competition's time on cloning. Most

importantly, you miss an avenue to widespread early adoption. A large and in�uential market (the people



18. History 24

who manage the servers that run e�ectively all of the Internet and more than 17% of business data centers)

will correctly write your company o� as clueless and defensive because you didn't realize these things. Then

they'll buy their boards from someone who did.

18 History

This is $Revision: 1.14 $.

Versions not described here are minor editorial and typo-�x updates.

20 May 1999, version 1.1 � draft.

18 Jun 1999, version 1.2 � �rst private review version.

24 Jun 1999, version 1.5 � �rst public release.

24 Jun 1999, version 1.6 � minor update; point at de�nition of `hacker'.

24 Jun 1999, version 1.7 � minor update; clarify criterion (e).

24 Jun 1999, version 1.9 � `future-proo�ng', the `Free the Future' model, and a new section on exclusion

payo�s.

24 Jun 1999, version 1.10 � better name for the `Razor Blades' model.

25 Jun 1999, version 1.13 � corrected 13% claim about Netscape revenues; added better treatment of free-rider

e�ects, corrected list of closed protocols.

25 Jun 1999, version 1.14 � added e-smith, inc.

9 Jul 1999, version 1.15 � new appendix on hardware drivers, and a better explanation of rivalrous goods

due to Rich Morin.


