
System Description 

Photo 7: A color test chart 
showing the 75 shades of 
hue available fro m the 
Apple-II as presented on a 
typical commercial color 
set, using one of several 
RF modulators available 
on the mar/?et. The Apple 
BASIC program used to 
generate this color is 
shown in the text portion 
of this split screen 
(graphics and text) 
display. 

The Apple-II Stephen Wozniak 
Apple Computer Co 
20863 Stevens Creek Blvd B3-C 
Cupertino CA 95014 

To me, a perso nal computer should be 
small, reli abl e, conven ient to use an d inex
pensive. 

The Apple-I, my first video oriented 
single board computer, was des igned late in 
1975 and sold by word of mouth through
out California and late r nationwide through 
reta il computer stores. I think that the 
Apple-I co mputer was the first micropl"Oces
sor system pl"Odu ct on the market to co m
pletely integrate the display generat ion cir
cuitry, microprocesso r, memory and power 
supply on the same board. Thi s meant that 
its owner could run the Apple BASIC 
inter preter with no add itional electroni cs 
other than a keyboard and video mon itor. 
The Apple-I video co mputer board was 
originally intended as a television terminal 
product which could also operate in a stand 
alone mode with out much in the way of 
memory, although it did have a processor, 
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space for 8 K bytes of 4 K dynamic memory 
chips, and its shared video generation and 
dyna mi c memory refresh logic. App le- I was 
so ld as a completely asse mbled and tested 
processor board with a price under $700 at 
the reta il level. 

The latest result of my design activities is 
the Apple-II which is the main subject of 
th is system description article. The Apple-II 
builds upon this idea by providing a co m
puter with more memory capability, a read 
only memory (ROM) BASIC in terprete r, 
co lor video graphics as well as point graphics 
and character graph ics, and exten ded sys
tems software. 

Integral Graphics 

A key part of the Apple-II design is an 
integra l video display generator which di
~ectly accesses the system's programmabl e 



memory. Screen formatting and cursor co n
tro ls are rea li zed in my design in the form of 
about 200 bytes of read onl y memory which 
are bu ilt into the Appie-Il's mask pro
grammed 8 K bytes of read on ly memory. A 
'I K byte segment of the processor's main 
memory is dedicated to the display gener
ator, although it is also accessibl e to pro
gra ms , The di spl ay transfe r rate is th e time it 
takes to fu ll y define the contents of th is 
segment of memory, and averages abo ut 
1000 characters per second, limi ted pri-

------, 

maril y by the software sc rolling routines in 
the system read on ly memory, 

Since the App le- II incorporates this di s
play generator as a part of its des ign, its text 
mode beco mes the term inal for the system. 
The displ ay has 24 rows of 40 characters 
disp layed on an ordinary bl ac k and wh ite or 
color telev ision sc reen. Each character in the 
Apple-II des ign is a 5 by 7 dot matrix, so the 
present vers ion of the system on ly imple
ments upper case characters of the 6 bit 
ASCI I subset, as we ll as the usual numbers 
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Figure 1: A block diagram of the Apple- I I display generator. The generator sneaks into memory on the externally unused phase 
of the 6502 processor's 2 phase clock. The output of the memory is processed (after a I clock cycle delay) to produce a net 
video output through a software controlled video multiplexer. The three major modes of operation are: 

Color graphics, in which each 4 bit nybble of the byte is treated as a color definition code by the color generator. 

Character generation in which the 8 bit code is processed with a read only memory to generate a dot matrix pattern which 
is serialized and sent to the video multiplexer. 

Blacl?-white point graphics in which the 8 bit word from memOlY is used to control the contents of a segment of a 280 by 
160 point grid. 

The timing diagram sho ws how the basic I iJ.S processor cycle period is split up into a video memory cycle and a microprocessor 
me mOlY cycle. Since the processor is engaged in in ternal house/?eeping operations during the first (high level) half of a ipl 
period, this segment of time can be used by the video generator to sneak into memory. Since all of memory is continuously 
being scanned by the low order bits out of video generator, the entire 48 K byte field (maximum) of dynamic memory is 
refreshed by the video portion of the cycle. (Refreshing of dynamic memory means scanning through all possible low order 
addresses to recharge the internal memory capacitors of the chips.) 
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Photo 2: This series of photos shows 
the steps in writing an animated 
BASIC game using the Apple-II com
puter's BASIC interpreter. This se
quence highlights the process of 
writing a paddle versus "wall" game 
where the object of play is to knock 
bricks out of the wall and eventually 
get the ball to go all the way through. 
This game is similar to many seen in 
amusement parks and arcades, and is 
typical of the kind of game which can 
be implemented with Appie-ll's BA
SIC software. Using the split screen 
graphics and text display mode, the 
BASIC statements are shown at the 
bottom of each picture. 

Photo 2a: The first step in any game is 
to generate the uniform color back
ground for the action of the game. 
Here we use a blue field. 

Photo 2b: Then we must add a liberal 
dose of obstacles and field pieces to 
mal?e the problem interesting. For this 
game, the major obstacle is a brick 
wall of orangish (color 73) and green
ish (color 72) bricks. Later 017, since 
we can look at the contents of the 
screen directly, the game algorithm 
will be manipulating these bricks. 

and graphics ava il ab le in standard character 
generator read onl y memory parts. Assuming 
that the video display is the current ly 
assigned syste m output device, the display is 
accessed through our system software in 
read only memory by using a subroutine 
called COUT which adds text to the sc reen 
using an automatic sc rolling technique. This 
is typical of the many read only memory 
routines which I've incorporated into the 
ROM to provide comp lex features with 
relatively simple user interfaces. Another 
examp le of such a softwal"e feature is a user 
definable scrolling window. This means that 
the user of th e system can pick any of four 
coordinates defining any rectangular subset 
of the viewing area of the video screen as the 
current scrolling zone. The remainder of the 
display will remain fro zen and data in the 
window will sc roll normally when COUT is 
accessed . This is a most useful feature: For 
example, the user can set up a game back
ground or instru ction menu in one pal"t of 
the screen while using the remainder of the 
screen for scro ll ing the variab le data. 

In the text mode, each character position 
may be displayed in norma l (white characte r 
on black background) or inverse, or flashing 
modes. This infol·mat ion is spec ified by the 
high order bits of each character stored in 
the display memory. The cursor position, for 
example, is indi cated by fmcing the charac
ter at the cursor locat ion to be in the 
flashing mode with in verse video. 

User ap plication programs may switch the 
display mod e from character to co lor graph
ics with a singl e instruction, dividing the 
screen in sta ntly into a patchwork of co n
trollable color · on a grid of 40 hor izo ntal 
locations by 48 vertical locat ions. Each cell 
in the gr id may be one of ·15 co lors, and 
software built into the system I"ead only 
memory can be used to define the co lor of 
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any point as set by X and Y coordinate 
integer values. Photo 1 shows a color scale 
for the ·15 colors possible, and a simp le 
BASIC program which generated the display. 
Here the scrolling window feat ures are used 
to set the color graphics mode in the fixed 
portion of the screen (above) and set the 
text mode of operation in the scrolling 
portion (below). This mi xed mode provides 
a 40 by 40 color graphics grid plus four lines 
of scrolling text at the bottom of the sc reen . 
A routine in the system I·ead on ly memory 
selects this mode and sets up the scrolling 
window corresponding to the text portion. 
I've found this mode especial ly usefu l to 
BASIC programmers who can write anima
tion games like Pong while holding a tradi" 
tional BASIC conversation in the text region 
of the screen. This sp lit screen mode of 
viewing is used fo r all the color graph ics of 
photo 2 as well. 

The same display memory region that is 
used for the text display is used for the color 
grap hics. System software ro ut ines supp li ed 
in the read only memory of the processor 
allow users to simply clear the di sp lay, se lect 
colors, plot points, draw hor izo ntal and 
vertical lin es, and sense the color va lues 
presently at spec ified screen positions. I like 
to think of these system software sub rou" 
tines as enhance ments to the 6502 instruc
tion set for the purposes of display co ntrol. 

High reso lution graphics is the remaining 
Apple-II display mode. This mode of display 
is set up by system software routines which 
are delivered with the computer, but are not 
built into the system read only memory. 
(Even with 8 K bytes for the read only 
memmy space, there sometimes isn't enough 



Photo 2c: Next, we must of course 
add a paddle, here created with a 
deeper yellowish orange (color 9) hue. 

Photo 2d: Then, since no video court 
game is complete without a ball we 
must add a square "ball" to the 
program, and set up some of the 
parameters of its motion. 

room to fit all the needed features.) In the 
high resolution mode, 8 K bytes of main 
memory store the data for a display of 
280 horizontal dot positions by 192 vertical 
dot positions; so to allow enough room for 
some BASIC software to play games with 
this mode the system requires at least 12 K 
of memory . If a color television is used with 
this high resolution mode, the available 
colors are black, white, violet and green. A 
mixed mode with 160 rows of 280 dots plus 
four lines of scro lling text can also be set up. 
Applications of the high resolution graphics 
modes include game boards, mazes, maps, 
plots and histograms, user defi nable char
acter sets, and games like Space War in its 
original an imation graphics versions. 

Some Details 

All the Apple-II video modes work iden
tically, using a common clock timing chain 
wh ich is shared by the processor, memory 
refresh and video generation logic. During 
each microprocessor clock cycle's <I> 1 clock 
pulse, an address is specified by the video 
circuits and directed to the programmable 
memory of the system through the address 
multiplexor (MUX) of figure ·1. Display data 
is received by the three forms of video data 
generators toward the end of the <1>2 pulse, 
and this data is then latched for use during 
the entire next clock cycle. Since all this 
action occurs during the <1>, pulse which 
lasts 500 ns, the video generator is ab le to 
take over the access to the memory at a time 
when the 6502 processor is busy wi th 
internal housekeepi ng and processing opera
tions which leave the data bus free. During 
the <1>2 pulse, when the processor takes 
command of the bus, the programmabl e 
memory of the system is used by the 
executing program as if the video generator 

didn't ex ist at all . Because the integrated 
disp lay design uses this direct memory access 
technique without stealing processor cycles , 
it is possible to program accurate and pre
dictable t iming loops in software as if no 
DMA were present in the system. 

Memory 

It is all eged in the Santa Cl ara (Silicon) 
Valley th at the microprocessor was invented 
to se ll programmable and read on ly memory 
chips. It certainly has been the case that one 
microprocessor in the past would often 
support hundreds of memory chips, but 
times change. Technology has sin ce 
bestowed upon us the 4 K bit and 16 K bit 
dynamic programmable memory ch ips. 

Apple- II was designed to operate with the 
16 pin dynamic programmable memory 
parts, wh ich come in 4 K and 16 K versions 
which are (with some SUbtleties) pin for pin 
compatib le. 

The App le- II board is supp li ed with 
sockets for three blocks of memory, each of 
which may be configured to use either 4 K 
or 16 K dynamic programmable memory 
parts, with intermixing a ll owed . This means 
that if you were to pUI·chase an App le with 
4 K bytes of memory and later want to add 
16 K bytes, there is no need to scrap the 4 K 
ch ips. 

Dynamic memories have one design 
characteristic which is not present in the 
simp ler (but more ex pensive) static memo
ries . Thi s is the fact that they use capacit ive 
storage elements built into the chips which 
must be periodically recharged ("re
freshed ") to prevent the information from 
disappearing. 

One of the elegant simp lifications 
provid ed by a system such as the App le- II 
with its bu il t- in display is the fact that 
refreshing th e entire memory address 
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Photo 2e: Finally, the last 
steps in finesse are the 
score displays and related 
captions which complete 
the game. This game is 
controlled by using one of 
the analog inputs of the 
Apple-II to determine the 
index of the current loca
tion of the paddle, so that 
by twisting the pot the 
paddle is moved,. the 
speaker output is used to 
generate a sound burst 
when the ball hits the pad
dle or wall. 



(a) 

}LIST 
5 OSP APPLE 

10 FOR 1=1 TO 10 
20 IF 1)5 THEN 40 
30 APPLE=I: GOTO 50 
40 APPLE= 100+ I 
50 NEi\T I 
60 PRINT "DONE": END 

)RUN 
#30 APPLE=l 
#30 APPLE=2 
#30 APPLE=3 
#30 APPLE=4 
#30 APPLE=5 
#40 APPLE=106 
#40 APPLE=107 
#40 APPLE=108 
#40 APPLE=109 
140 APPLE=110 
DONE 
~ 

(b) 

Photo 3: Two examples of the Apple BASIC interpreter, in the form of programs with several lines of execution results. (a) The 
interpreter has a symbolic trace feature which allows dumping of named variables whenever a change occurs. This simple 
program illustrates this "DSP" command with a simple computational program. (b) A similar debugging feature of Steve 
Wozniak's Apple BASIC interpreter is a method of running the interpreter with a statement number trace, by giving a TRA CE 
command instead of RUN in the command mode of the interpreter. This enables one to fairly quickly debug a BASIC program 
by exam'ining its effect on variables or its course of evolution through statement numbers. 

space of dynamic memory ch ips is inherent 
in the operation of the video display ge nera
tor. On successive pulses of the video dis
play, it cycles through all the low order 
add resses of the memories as the memory is 
scanned to generate the video image. But 
scanning throug h the addresses with in the 
maximum all owab le time is the algorithm 
used to accomp li sh the required refreshing 
of the memories; so with this video genera
tor integral to the computer, refreshing of 
the memories happens to come for free and 
is tota lly transparent to the user with no 
extended, missing or delayed cycles. This 
characteri stic is sometimes ca ll ed "hidden 
refresh." 

Standard Per ipherals 

I designed the App le- II to come with a set 
of sta ndard periph erals, in order to f it my 
concept of a personal computer. In ad dition 
to the video display , co lor graphics and high 
resolution grap hics, this design includes a 
keyboard in terface, audio cassette interface, 
four ana log game padd le inputs (for user 
supplied potentiometers wh ich vary a re
sistance which the processor measures), 
three switch inputs, fo ur 1 bit annu nciator 
outputs, and even an audio output to a 
speaker. Also part of the Apple- II design is 
an 8 slot motherboard for 10 which has a 
fully buffered bus, prioriti zed in te rrup ts, 
two prioritized direct memory access (DMA) 
schemes, and address decod ing at the indivi-
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dual slots so that multiple bit address de
coders are not required on peripheral boards. 

The Apple-II cassette interface is simple, 
fast, and I think most reliable . The data 
transfer rate averages over 180 bytes per 
second, and the recording scheme is com
patible with the interface used with the 
Apple- I. This tape recording method can be 
used with any inexpensive recorder, but as 
with any such use of audio media o nl y high 
quality tapes shou ld be used in order to 
avoid problems due to dropouts from poor 
ox ide coatings on the tapes. I n the Apple 
audio cassette interface, timing is performed 
by software which is referenced to the 
system clock, A zero bit is defined as a fu ll 
cycle of a 2000 Hz signa l (500.us long), while 
a one bit is defined as a full cycle of a 
1000 Hz signal (1 ms long). While read ing data, 
full cycles are sampled, never half cycles, a 
method which tends to provide immunity to 
DC offset and other forms of distortion. All 
the cassette management routines are avail 
ab le to user programs as subroutine calls 
from assembly language directly, or through 
hooks in the BASIC interpreter. 

The Apple-II analog game contro l paddle 
circu its are based upon inexpensive timer 
chips of the 555 type . I've used a quad timer 
of this type, called the 553, as shown in 
figure 2. To read the value of resistance on 
the padd le's potentiometer, the timer is 
strobed under software contro l using rou
tines in the system read only memory. The 



(a) (b) 

t:F700L 

F700- Fe. J' 4C CF SBC $CF4C,'Y 
F703- F6 B5 It~C $B5 .. :": 
F705- titi BF~I< 
F706- .-.e t10 STA :tQ~ .. 0 __ 1 

F70S- B~ 01 LDA '-' ;f1j1 .• ':-:. 
F70A- ,-.r::- 0i STA $0i 0...1 

F70C- 60 RTS 
F70D- A5 ti0 LOA :H:W 
F70F- Qt:" 

_" --I 00 :::TA $(10 .. :": 
F7il- A~ '-' 0i LOA $01 
F713- 95 01 STA $0L::~ 
F715- 60 IHS 
F716- A9 1'if:"1 LOA #$~)0 

F718- 85 01 STA $01 
F71A- 8~ 10 STA $10 .J 
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F720- F6 00 HIe $00,X 
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F,24- F6 131 IHe $01 .. x 
* 

Photo 4: Far from being limited to interpretive integer BASIC, the Apple-II includes some powerful debugging and software 
development aids at the machine language level. Here at (a) is an example of its dissassembler mode of operation, invoked by the 
L command following an address in hexadecimal. A corresponding nonsymbolic assembler program will perform transformations 
in the other direction from text sources. Here at (b) is an example of the instruction trace command, which allows a machine 
language program to be followed mnemonically via dynamic disassembly, with register and condition code contents indicated 
after each instruction. 

input routine then enters a loop which 
counts the length of the timer output pulse, 
which is a function of the paddle potentiom
eter's setting. To prevent endless loops if a 
wire breaks, the paddle scan routines exit at 
the maximum count of 255. The resolution 
of the loop is 12 flS per count. 

One memory address is dedicated to the 
audio output port which drives a speaker. 
When this memory location is referenced 
from a program, with either a read or a write 
operation, the speaker drive line is toggled . 
Generating tones requires continuous 
speaker toggling by this method, at an 
audible rate. The cassette output port works 
in a similar (toggle) fashion to generate 
audio tones for the tape. The annunciator 
outputs each have two corresponding ad
dresses, with one used to set the output and 
the second used to clear the outputs. Switch, 
paddle and cassette inputs place their data 
on the system bus in the sign bit position 
when their corresponding addresses are refer
enced; this choice of wiring enables software 
to test the state of the bit directly with a 
conditional branch instruction of the 6502 
processor. 

Apple BASIC 

Apple-II comes with an Apple BASIC 
interpreter in the mask programmed read 
only memories of the system. There is no 
need to load it off tape, nor to dedicate any 

programmable memory for it. I t's always 
there and it is impossible to accidentally 
clobber it. This BASIC is essentially similar 
to any BASIC with the exceptions that it 
only implements 16 bit fixed point arithme
tic. It also features some unique language 
extensions to take advantage of the Apple-II 
hardware features such as color gra;Jhics and 
to provide cor.veniences in the form of 
debugging aids. It is intended primarily for 
games and educational uses. 

A monitor command puts you into 
BASIC mode, which is indicated on the 
screen by a prompt character, ">". 
Memory limits for BAS IC source programs 
and data are set automatically at the time of 
entry, but these limits may be varied by user 
commands. While in BASIC mode, state
ments are entered on the current system 
input device, which is normally the key
board. 

Apple-II BASIC is impl emented as a 
translator-interpreter combination. When a 
line is read from the input device, the 
translator analyzes it and generates a more 
efficient internal language facsimile. Syntax 
errors are detected at this time. The "nouns" 
of this internal language are variable names, 
integer constants (preconverted to binary for 
execution speed enhancement), and string 
constants. The "verbs" are 1 byte tokens 
substituted for keywords, operators and 
delimiters. Because the translator dis
tinguishes syntax, different verbs are as-

41 



ONE SECTION, 553 QUAD TIMER 

ONESHOT 

FROM I BIT TO I BIT 
OUTPUT PORT -------..j TRIGGER OUT I------INPUT PORT 

CONTROL 

I 
USER SUPPLIED 

+V I VARIABLE RESISTANCE 

L:Ji 
I 

APPLE I 
I 

Figure 2: How to make a 7 bit measurement of an analog parameter for 
games (or perhaps we should say "2 bit"). Basically, a 555 style timing 
element is set up so that it can be triggered by a 7 bit output port. After 
triggering the oneshot, the processor enters a timing loop continuously testing 
the 7 bit input port until the end of the oneshot's cycle, which is controlled 
by the game parameter potentiometer. The result is an integer count 
developed by the timing loop which gives a measure of how long the oneshot 
pulse lasted, and hence a measure of the position of the input potentiometer. 
Apple-II implements four of these resistance measuring ports (which have 
plenty of accuracy for game contexts with graphics display feedbacl? but are 
hardly not to be interpreted as having any absolute accuracy independent of 
hand-eye coordination). 

Author's Note 

50 as not to slight their 
efforts, I would like to 
thank Allen Baum for 
originating the Apple-I I 
debug software, Doug 
Kraul for helpful sugges
tions on the 10 structure, 
and Randy Wigginton and 
Chris Espinosa for many 
long and late hours testing 
the Apple BASIC. ... SW 

signed to different usages of the same 
symbol. For example, three distinct verbs 
represent the word PRINT, depending on 
whether it is immediately fo ll owed by a 
string source, an arithmetic expression or 
nothing. Thus th is distinction need not be 
made at execution time. For each verb there 
exists a subroutine to perform that specific 
action. Listing a program actua ll y involves 
decompiling the internal language back to 
BASIC source code. Those statements with 
line numbers are stored as part of the user 
program, while those without line numbers 
are executed immed iate ly. If desired, the 
Apple BASIC interpreter's editing funct ions 
can be set to generate line numbers auto
matically. Although some commands are 
valid on ly for immediate execut ion and 
others on ly for programmed execution, most 
can be employed in both ways . In the 
BASIC source programs, multiple statements 
may reside on the same line, separated by 
colons (':'). 

BASIC language statements are stored in 
user memory as they are accepted and 
variables are allocated space the first time 
they are encountered during immediate or 
programmed execution . When a program 
terminates, whether by completion, inter
ruption or error conditions, all variables are 
preserved. Programs may be interrupted in 
execution by typing an ASCII control C; it is 
then possible to exam ine and modify a few 
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variables in immediate mode, then continue 
execution at the point of interruption by 
typing the CONtinue command. BASIC pro
vides the line number of the statement as the 
point of interruption when this sequence is 
used. The entire variable space is cleared to 
zero when BASIC is initialized by the CLR 
command, and prior to executing the RUN 
command . (It is possible to carry variables 
from one program to another, but to initiate 
the second program a GOTO command must 
be used instead of RUN in order to override 
the automatic clear at the beginning of 
execution of a new program.) 

The interpreter consists of a standard 
expression evaluator and a symbol table 
rou t ine for allocating variable storage similar 
to those described by Prof Maurer in his 2 
part series 'in the February and March 1976 
issues of BYTE. As statements are scanned, 
nouns and verbs are encountered . Variable 
names result in calls to the symbol table 
routine which pushes address and length 
information on the noun stack (operand 
stack). Constants are pushed directly onto 
this stack. Verbs are pushed onto the verb 
stack (operator stack) after popping and 
executing any verbs of greater priority. A 
verb is executed by ca iling its associated 
subroutine. Tables define priorities and rou
tine entry addresses for all verbs. Keywords 
such as THEN or STEP, and delimiters such 
as commas and parentheses, are dealt with 
just as though they were arithmetic opera
tors. Verb routines obta in their arguments 
from the noun stack. Because verb~ such as 
parentheses tend sometimes to be of low, 
and other times of high priority, each verb is 
actually ass igned two priorities (left hand
right hand). One represents its tendency to 
force execution of other verbs, the second 
its tendency to be executed. 

Interactive Monitor 

The entry into BASIC, as well as other 
user oriented features of the Apple-II, is 
provided by an interactive keyboard monitor 
which serves as an aid to writing and 
debugging machine language programs for 
the 6502 processor of the system. The user 
enters commands from the keyboard speci
fying data and address parameters in hexa
decimal. Multiple commands are permitted 
on the same line and editing features facili 
tate error correction. I complete ly wrote and 
debugged Apple BASIC using the monitor as 
my on ly software development tool. I twas 
of course the first hand assembled program I 
wrote for the system. In addition to the 
direct monitor commands, a number of 
subroutines were included in the Appie-ll's 
mask programmed system read on ly memory 



Sweet Sixteen Calling Sequence : 

20 89 F6 

~ ~~--------~~~--------~ 
JSR 

SWEET16 
SWEET16 
OP CODES 

6502 
SWEET16 CODE 
RETURN 

(leave 6502 
direct execut ion) 

OP CODE 
(reenter di rect 

6502 execution ) 

SWEET16 OP CODES (16 Bit Operands, 2's Complement Arithmetic) 

I nstr Op Op 
Code Length D escription Code Length Description 

00 
01 
02 
03 
04 
05 
06 
07 
08 
09 
OA 
OB 
OC 
00 
OE 
OF 

Notes . 

1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
1 
1 
1 
1 
1 
1 

Return to 6502 mode 
Branch always 
B ranch no carry 
Branch on carry 
Branch on positive 
Branch on negative 
Branch if equal 
Branch not equal 
Branch on negative 1 
Branch not negative 1 
Break to monitor 
No operation 
No operation 
No operation 
No operation 
No operation 

--- ---- --
1R 3 R~2 byte constant (Load register immediate) 
2R 1 ACC~R 

3R 1 ACC---- R 
4R 1 ACC-@R, R+-R+1 
5R 1 ACC--->@R, R+-R+1 
6R 1 ACC+-@R double 
7R 1 ACC----@R double 
8R 1 R+-R-1, ACC-@R (pop) 
9R 1 R+-R - 1, ACC--->@R 
AR 1 ACC-@R (pop) double 
BR 1 COMPARE ACC to R 
CR 1 ACC-ACC+R 
DR 1 ACC+-ACC-R 
ER 1 R:'-R+1 
FR 1 R+-R-1 

1. All branches are fo ll owed by a 1 byte relative displacement. Works identically to 
6502 branches . 

2 . Only ADD, SUB and COMPARE can set carry . 
3. Notation: 

R = a 16 bit "reg ister" operand designation, one of 16 labelled 0 to 15 
(decimal), 0 to F (h exadecima l). 

ACC = register operand RO . 
@R = indirect reference, using the reg ister R as the pointer. 

: } = assignment of val ues. 

4. Length of instructions:. 
Branches are always two bytes: op code followed by relative displacement. 
Load register immediate (1 R) is three bytes: the hexadecimal op code 10 

to 1 F followed by the 2 byte l iteral value of a 16 bit number. 
All other instructions are one byte in length. 

to provide easy access to hardware features. 
These are the service routines which are used 
by the monitor, as wel l as BASIC and any 
user routines you care to code. 

The Story of Sweet Sixteen 

While writ ing Apple BASIC, I ran into the 
problem of manipulating the 16 bit po in te r 
data and its ar ithmet ic in an 8 bit machine. 

My so lution to this prob lem of handling 
'16 bit data, notab ly pointers, with an 8 bit 
Illicroprocessor was to implement a non
existent 16 bit processor in software, inter
preter fashion, which I refer to as SWEET16. 

SWEET16 contains sixteen interna l 16 bit 
registers, actually the first 32 bytes in main 
memory, labell ed RO through R15. RO is 
defined as the accumulator, R15 as the 
program counter, and R14 as a status reg
ister. R13 stores the result of all COM
PARE operations for branch testing. The 

user accesses SWEET16 with a subroutine 
call to hexadecimal add ress F689. Bytes 
stored after the subroutine ca ll are thereafter 
interpreted and executed by SWE ET16. One 
of SWEET16's comillands returns the user 
back to 6502 mode, even restoring the 
original register contents. 

- Implemented in o nl y 300 bytes of code, 
SWEET16 has a very simp le instruction set 
tailored to operations such as memory 
moves and stack manipulation. Most op 
codes are on ly one byte long, but since she 
runs app roximate ly ten times slower than 
eq ui va lent 6502 code, SWEET16 should be 
employed on ly when code is at a premiulll 
or execution speed is not. As an exa illple of 
her usefulness, I have estimated that about 
1 K bytes could be weeded out of Illy 5 K 
byte App le- II BAS IC interpreter with no 
observable performance degradation by 
se lect ively app lying SWEET16.-
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The Apple- II monitor read 
only memory also contains 
an interpreter program 
called SWEET/6 which 
can be used from machine 
language programs to im
plement 76 bit arithmetic 
operations. This facility 
can prove quite useful) for 
example, in calculating ad
dresses, and serves as an 
extension of the instruc
tion set of the 6502 which 
is reached by the jSR 
SWEET/6 escape sequence 
in code. 
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