
System Description

Photo 7: A color test chart
showing the 75 shades of
hue available fro m the
Apple-II as presented on a
typical commercial color
set, using one of several
RF modulators available
on the mar/?et. The Apple
BASIC program used to
generate this color is
shown in the text portion
of this split screen
(graphics and text)
display.

The Apple-II Stephen Wozniak
Apple Computer Co
20863 Stevens Creek Blvd B3-C
Cupertino CA 95014

To me, a perso nal computer should be
small, reli abl e, conven ient to use an d inex
pensive.

The Apple-I, my first video oriented
single board computer, was des igned late in
1975 and sold by word of mouth through
out California and late r nationwide through
reta il computer stores. I think that the
Apple-I co mputer was the first micropl"Oces
sor system pl"Odu ct on the market to co m
pletely integrate the display generat ion cir
cuitry, microprocesso r, memory and power
supply on the same board. Thi s meant that
its owner could run the Apple BASIC
inter preter with no add itional electroni cs
other than a keyboard and video mon itor.
The Apple-I video co mputer board was
originally intended as a television terminal
product which could also operate in a stand
alone mode with out much in the way of
memory, although it did have a processor,

34

space for 8 K bytes of 4 K dynamic memory
chips, and its shared video generation and
dyna mi c memory refresh logic. App le- I was
so ld as a completely asse mbled and tested
processor board with a price under $700 at
the reta il level.

The latest result of my design activities is
the Apple-II which is the main subject of
th is system description article. The Apple-II
builds upon this idea by providing a co m
puter with more memory capability, a read
only memory (ROM) BASIC in terprete r,
co lor video graphics as well as point graphics
and character graph ics, and exten ded sys
tems software.

Integral Graphics

A key part of the Apple-II design is an
integra l video display generator which di
~ectly accesses the system's programmabl e

memory. Screen formatting and cursor co n
tro ls are rea li zed in my design in the form of
about 200 bytes of read onl y memory which
are bu ilt into the Appie-Il's mask pro
grammed 8 K bytes of read on ly memory. A
'I K byte segment of the processor's main
memory is dedicated to the display gener
ator, although it is also accessibl e to pro
gra ms , The di spl ay transfe r rate is th e time it
takes to fu ll y define the contents of th is
segment of memory, and averages abo ut
1000 characters per second, limi ted pri-

------,

maril y by the software sc rolling routines in
the system read on ly memory,

Since the App le- II incorporates this di s
play generator as a part of its des ign, its text
mode beco mes the term inal for the system.
The displ ay has 24 rows of 40 characters
disp layed on an ordinary bl ac k and wh ite or
color telev ision sc reen. Each character in the
Apple-II des ign is a 5 by 7 dot matrix, so the
present vers ion of the system on ly imple
ments upper case characters of the 6 bit
ASCI I subset, as we ll as the usual numbers

I V IDEO GENERATOR / MEMORY / PROCESSOR T IMIN G AND CON TROL

I

+(+ I <PI' ROW OR

~
I COLUMN SELECT
I
I

PHASE
I GEN ADDR*-~

PROGRAMMAB LE SHIFTER
MEM 8

VIDEO

.J -- ADDR ADDRESS -MU X

PROC ESSOR I ADDR* -~
16

!

A

PROCESSOR

V

_____ ..J

* ROW AND COLUMN
A DDRESSES

8

BIDIRECTIONAL SYSTEM BUS

"MUX"o MULTIPLEXER

VIDEO MODE CONTROL

TIMING :

6502 PROCESSOR'S

<PI CLOCK SHOW ING

WHEN AND BY WHOM
MEMORY IS ACCESSED

MEMORY

(4 K TO 4 8 K BYTE S)

8

./

MEMORY
DATA
IN

(

MEMOR Y
DATA OUT

8

.

~
V IDEO ACCESS
AND MEMORY
REFRESH

8

8

<po l !"s

~
PROCESSOR
ACCESS AND
PROGRAM
EX ECUTION

CHARACTER
GENERATOR

SERIALIZER

.

+

COL OR
GENERATOR I---

SERIALIZER

SERIAL
SERIAL
VIDEO

VIDEO (C HAR)
(GRAPHICS)

~ SOFTWARE /
CONTROLLED
VIDEO MUX

tlA VIDEO
OUT

COLOR
VIDEO
SIGNAL

Figure 1: A block diagram of the Apple- I I display generator. The generator sneaks into memory on the externally unused phase
of the 6502 processor's 2 phase clock. The output of the memory is processed (after a I clock cycle delay) to produce a net
video output through a software controlled video multiplexer. The three major modes of operation are:

Color graphics, in which each 4 bit nybble of the byte is treated as a color definition code by the color generator.

Character generation in which the 8 bit code is processed with a read only memory to generate a dot matrix pattern which
is serialized and sent to the video multiplexer.

Blacl?-white point graphics in which the 8 bit word from memOlY is used to control the contents of a segment of a 280 by
160 point grid.

The timing diagram sho ws how the basic I iJ.S processor cycle period is split up into a video memory cycle and a microprocessor
me mOlY cycle. Since the processor is engaged in in ternal house/?eeping operations during the first (high level) half of a ipl
period, this segment of time can be used by the video generator to sneak into memory. Since all of memory is continuously
being scanned by the low order bits out of video generator, the entire 48 K byte field (maximum) of dynamic memory is
refreshed by the video portion of the cycle. (Refreshing of dynamic memory means scanning through all possible low order
addresses to recharge the internal memory capacitors of the chips.)

35

Photo 2: This series of photos shows
the steps in writing an animated
BASIC game using the Apple-II com
puter's BASIC interpreter. This se
quence highlights the process of
writing a paddle versus "wall" game
where the object of play is to knock
bricks out of the wall and eventually
get the ball to go all the way through.
This game is similar to many seen in
amusement parks and arcades, and is
typical of the kind of game which can
be implemented with Appie-ll's BA
SIC software. Using the split screen
graphics and text display mode, the
BASIC statements are shown at the
bottom of each picture.

Photo 2a: The first step in any game is
to generate the uniform color back
ground for the action of the game.
Here we use a blue field.

Photo 2b: Then we must add a liberal
dose of obstacles and field pieces to
mal?e the problem interesting. For this
game, the major obstacle is a brick
wall of orangish (color 73) and green
ish (color 72) bricks. Later 017, since
we can look at the contents of the
screen directly, the game algorithm
will be manipulating these bricks.

and graphics ava il ab le in standard character
generator read onl y memory parts. Assuming
that the video display is the current ly
assigned syste m output device, the display is
accessed through our system software in
read only memory by using a subroutine
called COUT which adds text to the sc reen
using an automatic sc rolling technique. This
is typical of the many read only memory
routines which I've incorporated into the
ROM to provide comp lex features with
relatively simple user interfaces. Another
examp le of such a softwal"e feature is a user
definable scrolling window. This means that
the user of th e system can pick any of four
coordinates defining any rectangular subset
of the viewing area of the video screen as the
current scrolling zone. The remainder of the
display will remain fro zen and data in the
window will sc roll normally when COUT is
accessed . This is a most useful feature: For
example, the user can set up a game back
ground or instru ction menu in one pal"t of
the screen while using the remainder of the
screen for scro ll ing the variab le data.

In the text mode, each character position
may be displayed in norma l (white characte r
on black background) or inverse, or flashing
modes. This infol·mat ion is spec ified by the
high order bits of each character stored in
the display memory. The cursor position, for
example, is indi cated by fmcing the charac
ter at the cursor locat ion to be in the
flashing mode with in verse video.

User ap plication programs may switch the
display mod e from character to co lor graph
ics with a singl e instruction, dividing the
screen in sta ntly into a patchwork of co n
trollable color · on a grid of 40 hor izo ntal
locations by 48 vertical locat ions. Each cell
in the gr id may be one of ·15 co lors, and
software built into the system I"ead only
memory can be used to define the co lor of

38

any point as set by X and Y coordinate
integer values. Photo 1 shows a color scale
for the ·15 colors possible, and a simp le
BASIC program which generated the display.
Here the scrolling window feat ures are used
to set the color graphics mode in the fixed
portion of the screen (above) and set the
text mode of operation in the scrolling
portion (below). This mi xed mode provides
a 40 by 40 color graphics grid plus four lines
of scrolling text at the bottom of the sc reen .
A routine in the system I·ead on ly memory
selects this mode and sets up the scrolling
window corresponding to the text portion.
I've found this mode especial ly usefu l to
BASIC programmers who can write anima
tion games like Pong while holding a tradi"
tional BASIC conversation in the text region
of the screen. This sp lit screen mode of
viewing is used fo r all the color graph ics of
photo 2 as well.

The same display memory region that is
used for the text display is used for the color
grap hics. System software ro ut ines supp li ed
in the read only memory of the processor
allow users to simply clear the di sp lay, se lect
colors, plot points, draw hor izo ntal and
vertical lin es, and sense the color va lues
presently at spec ified screen positions. I like
to think of these system software sub rou"
tines as enhance ments to the 6502 instruc
tion set for the purposes of display co ntrol.

High reso lution graphics is the remaining
Apple-II display mode. This mode of display
is set up by system software routines which
are delivered with the computer, but are not
built into the system read only memory.
(Even with 8 K bytes for the read only
memmy space, there sometimes isn't enough

Photo 2c: Next, we must of course
add a paddle, here created with a
deeper yellowish orange (color 9) hue.

Photo 2d: Then, since no video court
game is complete without a ball we
must add a square "ball" to the
program, and set up some of the
parameters of its motion.

room to fit all the needed features.) In the
high resolution mode, 8 K bytes of main
memory store the data for a display of
280 horizontal dot positions by 192 vertical
dot positions; so to allow enough room for
some BASIC software to play games with
this mode the system requires at least 12 K
of memory . If a color television is used with
this high resolution mode, the available
colors are black, white, violet and green. A
mixed mode with 160 rows of 280 dots plus
four lines of scro lling text can also be set up.
Applications of the high resolution graphics
modes include game boards, mazes, maps,
plots and histograms, user defi nable char
acter sets, and games like Space War in its
original an imation graphics versions.

Some Details

All the Apple-II video modes work iden
tically, using a common clock timing chain
wh ich is shared by the processor, memory
refresh and video generation logic. During
each microprocessor clock cycle's <I> 1 clock
pulse, an address is specified by the video
circuits and directed to the programmable
memory of the system through the address
multiplexor (MUX) of figure ·1. Display data
is received by the three forms of video data
generators toward the end of the <1>2 pulse,
and this data is then latched for use during
the entire next clock cycle. Since all this
action occurs during the <1>, pulse which
lasts 500 ns, the video generator is ab le to
take over the access to the memory at a time
when the 6502 processor is busy wi th
internal housekeepi ng and processing opera
tions which leave the data bus free. During
the <1>2 pulse, when the processor takes
command of the bus, the programmabl e
memory of the system is used by the
executing program as if the video generator

didn't ex ist at all . Because the integrated
disp lay design uses this direct memory access
technique without stealing processor cycles ,
it is possible to program accurate and pre
dictable t iming loops in software as if no
DMA were present in the system.

Memory

It is all eged in the Santa Cl ara (Silicon)
Valley th at the microprocessor was invented
to se ll programmable and read on ly memory
chips. It certainly has been the case that one
microprocessor in the past would often
support hundreds of memory chips, but
times change. Technology has sin ce
bestowed upon us the 4 K bit and 16 K bit
dynamic programmable memory ch ips.

Apple- II was designed to operate with the
16 pin dynamic programmable memory
parts, wh ich come in 4 K and 16 K versions
which are (with some SUbtleties) pin for pin
compatib le.

The App le- II board is supp li ed with
sockets for three blocks of memory, each of
which may be configured to use either 4 K
or 16 K dynamic programmable memory
parts, with intermixing a ll owed . This means
that if you were to pUI·chase an App le with
4 K bytes of memory and later want to add
16 K bytes, there is no need to scrap the 4 K
ch ips.

Dynamic memories have one design
characteristic which is not present in the
simp ler (but more ex pensive) static memo
ries . Thi s is the fact that they use capacit ive
storage elements built into the chips which
must be periodically recharged ("re
freshed ") to prevent the information from
disappearing.

One of the elegant simp lifications
provid ed by a system such as the App le- II
with its bu il t- in display is the fact that
refreshing th e entire memory address

39

Photo 2e: Finally, the last
steps in finesse are the
score displays and related
captions which complete
the game. This game is
controlled by using one of
the analog inputs of the
Apple-II to determine the
index of the current loca
tion of the paddle, so that
by twisting the pot the
paddle is moved,. the
speaker output is used to
generate a sound burst
when the ball hits the pad
dle or wall.

(a)

}LIST
5 OSP APPLE

10 FOR 1=1 TO 10
20 IF 1)5 THEN 40
30 APPLE=I: GOTO 50
40 APPLE= 100+ I
50 NEi\T I
60 PRINT "DONE": END

)RUN
#30 APPLE=l
#30 APPLE=2
#30 APPLE=3
#30 APPLE=4
#30 APPLE=5
#40 APPLE=106
#40 APPLE=107
#40 APPLE=108
#40 APPLE=109
140 APPLE=110
DONE
~

(b)

Photo 3: Two examples of the Apple BASIC interpreter, in the form of programs with several lines of execution results. (a) The
interpreter has a symbolic trace feature which allows dumping of named variables whenever a change occurs. This simple
program illustrates this "DSP" command with a simple computational program. (b) A similar debugging feature of Steve
Wozniak's Apple BASIC interpreter is a method of running the interpreter with a statement number trace, by giving a TRA CE
command instead of RUN in the command mode of the interpreter. This enables one to fairly quickly debug a BASIC program
by exam'ining its effect on variables or its course of evolution through statement numbers.

space of dynamic memory ch ips is inherent
in the operation of the video display ge nera
tor. On successive pulses of the video dis
play, it cycles through all the low order
add resses of the memories as the memory is
scanned to generate the video image. But
scanning throug h the addresses with in the
maximum all owab le time is the algorithm
used to accomp li sh the required refreshing
of the memories; so with this video genera
tor integral to the computer, refreshing of
the memories happens to come for free and
is tota lly transparent to the user with no
extended, missing or delayed cycles. This
characteri stic is sometimes ca ll ed "hidden
refresh."

Standard Per ipherals

I designed the App le- II to come with a set
of sta ndard periph erals, in order to f it my
concept of a personal computer. In ad dition
to the video display , co lor graphics and high
resolution grap hics, this design includes a
keyboard in terface, audio cassette interface,
four ana log game padd le inputs (for user
supplied potentiometers wh ich vary a re
sistance which the processor measures),
three switch inputs, fo ur 1 bit annu nciator
outputs, and even an audio output to a
speaker. Also part of the Apple- II design is
an 8 slot motherboard for 10 which has a
fully buffered bus, prioriti zed in te rrup ts,
two prioritized direct memory access (DMA)
schemes, and address decod ing at the indivi-

40

dual slots so that multiple bit address de
coders are not required on peripheral boards.

The Apple-II cassette interface is simple,
fast, and I think most reliable . The data
transfer rate averages over 180 bytes per
second, and the recording scheme is com
patible with the interface used with the
Apple- I. This tape recording method can be
used with any inexpensive recorder, but as
with any such use of audio media o nl y high
quality tapes shou ld be used in order to
avoid problems due to dropouts from poor
ox ide coatings on the tapes. I n the Apple
audio cassette interface, timing is performed
by software which is referenced to the
system clock, A zero bit is defined as a fu ll
cycle of a 2000 Hz signa l (500.us long), while
a one bit is defined as a full cycle of a
1000 Hz signal (1 ms long). While read ing data,
full cycles are sampled, never half cycles, a
method which tends to provide immunity to
DC offset and other forms of distortion. All
the cassette management routines are avail
ab le to user programs as subroutine calls
from assembly language directly, or through
hooks in the BASIC interpreter.

The Apple-II analog game contro l paddle
circu its are based upon inexpensive timer
chips of the 555 type . I've used a quad timer
of this type, called the 553, as shown in
figure 2. To read the value of resistance on
the padd le's potentiometer, the timer is
strobed under software contro l using rou
tines in the system read only memory. The

(a) (b)

t:F700L

F700- Fe. J' 4C CF SBC $CF4C,'Y
F703- F6 B5 It~C $B5 .. :":
F705- titi BF~I<
F706- .-.e t10 STA :tQ~ .. 0 __ 1

F70S- B~ 01 LDA '-' ;f1j1 .• ':-:.
F70A- ,-.r::- 0i STA $0i 0...1

F70C- 60 RTS
F70D- A5 ti0 LOA :H:W
F70F- Qt:"

_" --I 00 :::TA $(10 .. :":
F7il- A~ '-' 0i LOA $01
F713- 95 01 STA $0L::~
F715- 60 IHS
F716- A9 1'if:"1 LOA #$~)0

F718- 85 01 STA $01
F71A- 8~ 10 STA $10 .J

F71C- Al 00 LOA ($00, X)
F71E- 85 00 STA $00
F720- F6 00 HIe $00,X
F722- D0 02 SHE $F726
F,24- F6 131 IHe $01 .. x
*

Photo 4: Far from being limited to interpretive integer BASIC, the Apple-II includes some powerful debugging and software
development aids at the machine language level. Here at (a) is an example of its dissassembler mode of operation, invoked by the
L command following an address in hexadecimal. A corresponding nonsymbolic assembler program will perform transformations
in the other direction from text sources. Here at (b) is an example of the instruction trace command, which allows a machine
language program to be followed mnemonically via dynamic disassembly, with register and condition code contents indicated
after each instruction.

input routine then enters a loop which
counts the length of the timer output pulse,
which is a function of the paddle potentiom
eter's setting. To prevent endless loops if a
wire breaks, the paddle scan routines exit at
the maximum count of 255. The resolution
of the loop is 12 flS per count.

One memory address is dedicated to the
audio output port which drives a speaker.
When this memory location is referenced
from a program, with either a read or a write
operation, the speaker drive line is toggled .
Generating tones requires continuous
speaker toggling by this method, at an
audible rate. The cassette output port works
in a similar (toggle) fashion to generate
audio tones for the tape. The annunciator
outputs each have two corresponding ad
dresses, with one used to set the output and
the second used to clear the outputs. Switch,
paddle and cassette inputs place their data
on the system bus in the sign bit position
when their corresponding addresses are refer
enced; this choice of wiring enables software
to test the state of the bit directly with a
conditional branch instruction of the 6502
processor.

Apple BASIC

Apple-II comes with an Apple BASIC
interpreter in the mask programmed read
only memories of the system. There is no
need to load it off tape, nor to dedicate any

programmable memory for it. I t's always
there and it is impossible to accidentally
clobber it. This BASIC is essentially similar
to any BASIC with the exceptions that it
only implements 16 bit fixed point arithme
tic. It also features some unique language
extensions to take advantage of the Apple-II
hardware features such as color gra;Jhics and
to provide cor.veniences in the form of
debugging aids. It is intended primarily for
games and educational uses.

A monitor command puts you into
BASIC mode, which is indicated on the
screen by a prompt character, ">".
Memory limits for BAS IC source programs
and data are set automatically at the time of
entry, but these limits may be varied by user
commands. While in BASIC mode, state
ments are entered on the current system
input device, which is normally the key
board.

Apple-II BASIC is impl emented as a
translator-interpreter combination. When a
line is read from the input device, the
translator analyzes it and generates a more
efficient internal language facsimile. Syntax
errors are detected at this time. The "nouns"
of this internal language are variable names,
integer constants (preconverted to binary for
execution speed enhancement), and string
constants. The "verbs" are 1 byte tokens
substituted for keywords, operators and
delimiters. Because the translator dis
tinguishes syntax, different verbs are as-

41

ONE SECTION, 553 QUAD TIMER

ONESHOT

FROM I BIT TO I BIT
OUTPUT PORT -------..j TRIGGER OUT I------INPUT PORT

CONTROL

I
USER SUPPLIED

+V I VARIABLE RESISTANCE

L:Ji
I

APPLE I
I

Figure 2: How to make a 7 bit measurement of an analog parameter for
games (or perhaps we should say "2 bit"). Basically, a 555 style timing
element is set up so that it can be triggered by a 7 bit output port. After
triggering the oneshot, the processor enters a timing loop continuously testing
the 7 bit input port until the end of the oneshot's cycle, which is controlled
by the game parameter potentiometer. The result is an integer count
developed by the timing loop which gives a measure of how long the oneshot
pulse lasted, and hence a measure of the position of the input potentiometer.
Apple-II implements four of these resistance measuring ports (which have
plenty of accuracy for game contexts with graphics display feedbacl? but are
hardly not to be interpreted as having any absolute accuracy independent of
hand-eye coordination).

Author's Note

50 as not to slight their
efforts, I would like to
thank Allen Baum for
originating the Apple-I I
debug software, Doug
Kraul for helpful sugges
tions on the 10 structure,
and Randy Wigginton and
Chris Espinosa for many
long and late hours testing
the Apple BASIC. ... SW

signed to different usages of the same
symbol. For example, three distinct verbs
represent the word PRINT, depending on
whether it is immediately fo ll owed by a
string source, an arithmetic expression or
nothing. Thus th is distinction need not be
made at execution time. For each verb there
exists a subroutine to perform that specific
action. Listing a program actua ll y involves
decompiling the internal language back to
BASIC source code. Those statements with
line numbers are stored as part of the user
program, while those without line numbers
are executed immed iate ly. If desired, the
Apple BASIC interpreter's editing funct ions
can be set to generate line numbers auto
matically. Although some commands are
valid on ly for immediate execut ion and
others on ly for programmed execution, most
can be employed in both ways . In the
BASIC source programs, multiple statements
may reside on the same line, separated by
colons (':').

BASIC language statements are stored in
user memory as they are accepted and
variables are allocated space the first time
they are encountered during immediate or
programmed execution . When a program
terminates, whether by completion, inter
ruption or error conditions, all variables are
preserved. Programs may be interrupted in
execution by typing an ASCII control C; it is
then possible to exam ine and modify a few

42

variables in immediate mode, then continue
execution at the point of interruption by
typing the CONtinue command. BASIC pro
vides the line number of the statement as the
point of interruption when this sequence is
used. The entire variable space is cleared to
zero when BASIC is initialized by the CLR
command, and prior to executing the RUN
command . (It is possible to carry variables
from one program to another, but to initiate
the second program a GOTO command must
be used instead of RUN in order to override
the automatic clear at the beginning of
execution of a new program.)

The interpreter consists of a standard
expression evaluator and a symbol table
rou t ine for allocating variable storage similar
to those described by Prof Maurer in his 2
part series 'in the February and March 1976
issues of BYTE. As statements are scanned,
nouns and verbs are encountered . Variable
names result in calls to the symbol table
routine which pushes address and length
information on the noun stack (operand
stack). Constants are pushed directly onto
this stack. Verbs are pushed onto the verb
stack (operator stack) after popping and
executing any verbs of greater priority. A
verb is executed by ca iling its associated
subroutine. Tables define priorities and rou
tine entry addresses for all verbs. Keywords
such as THEN or STEP, and delimiters such
as commas and parentheses, are dealt with
just as though they were arithmetic opera
tors. Verb routines obta in their arguments
from the noun stack. Because verb~ such as
parentheses tend sometimes to be of low,
and other times of high priority, each verb is
actually ass igned two priorities (left hand
right hand). One represents its tendency to
force execution of other verbs, the second
its tendency to be executed.

Interactive Monitor

The entry into BASIC, as well as other
user oriented features of the Apple-II, is
provided by an interactive keyboard monitor
which serves as an aid to writing and
debugging machine language programs for
the 6502 processor of the system. The user
enters commands from the keyboard speci
fying data and address parameters in hexa
decimal. Multiple commands are permitted
on the same line and editing features facili
tate error correction. I complete ly wrote and
debugged Apple BASIC using the monitor as
my on ly software development tool. I twas
of course the first hand assembled program I
wrote for the system. In addition to the
direct monitor commands, a number of
subroutines were included in the Appie-ll's
mask programmed system read on ly memory

Sweet Sixteen Calling Sequence :

20 89 F6

~ ~~--------~~~--------~
JSR

SWEET16
SWEET16
OP CODES

6502
SWEET16 CODE
RETURN

(leave 6502
direct execut ion)

OP CODE
(reenter di rect

6502 execution)

SWEET16 OP CODES (16 Bit Operands, 2's Complement Arithmetic)

I nstr Op Op
Code Length D escription Code Length Description

00
01
02
03
04
05
06
07
08
09
OA
OB
OC
00
OE
OF

Notes .

1
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1

Return to 6502 mode
Branch always
B ranch no carry
Branch on carry
Branch on positive
Branch on negative
Branch if equal
Branch not equal
Branch on negative 1
Branch not negative 1
Break to monitor
No operation
No operation
No operation
No operation
No operation

--- ---- --
1R 3 R~2 byte constant (Load register immediate)
2R 1 ACC~R

3R 1 ACC---- R
4R 1 ACC-@R, R+-R+1
5R 1 ACC--->@R, R+-R+1
6R 1 ACC+-@R double
7R 1 ACC----@R double
8R 1 R+-R-1, ACC-@R (pop)
9R 1 R+-R - 1, ACC--->@R
AR 1 ACC-@R (pop) double
BR 1 COMPARE ACC to R
CR 1 ACC-ACC+R
DR 1 ACC+-ACC-R
ER 1 R:'-R+1
FR 1 R+-R-1

1. All branches are fo ll owed by a 1 byte relative displacement. Works identically to
6502 branches .

2 . Only ADD, SUB and COMPARE can set carry .
3. Notation:

R = a 16 bit "reg ister" operand designation, one of 16 labelled 0 to 15
(decimal), 0 to F (h exadecima l).

ACC = register operand RO .
@R = indirect reference, using the reg ister R as the pointer.

: } = assignment of val ues.

4. Length of instructions:.
Branches are always two bytes: op code followed by relative displacement.
Load register immediate (1 R) is three bytes: the hexadecimal op code 10

to 1 F followed by the 2 byte l iteral value of a 16 bit number.
All other instructions are one byte in length.

to provide easy access to hardware features.
These are the service routines which are used
by the monitor, as wel l as BASIC and any
user routines you care to code.

The Story of Sweet Sixteen

While writ ing Apple BASIC, I ran into the
problem of manipulating the 16 bit po in te r
data and its ar ithmet ic in an 8 bit machine.

My so lution to this prob lem of handling
'16 bit data, notab ly pointers, with an 8 bit
Illicroprocessor was to implement a non
existent 16 bit processor in software, inter
preter fashion, which I refer to as SWEET16.

SWEET16 contains sixteen interna l 16 bit
registers, actually the first 32 bytes in main
memory, labell ed RO through R15. RO is
defined as the accumulator, R15 as the
program counter, and R14 as a status reg
ister. R13 stores the result of all COM
PARE operations for branch testing. The

user accesses SWEET16 with a subroutine
call to hexadecimal add ress F689. Bytes
stored after the subroutine ca ll are thereafter
interpreted and executed by SWE ET16. One
of SWEET16's comillands returns the user
back to 6502 mode, even restoring the
original register contents.

- Implemented in o nl y 300 bytes of code,
SWEET16 has a very simp le instruction set
tailored to operations such as memory
moves and stack manipulation. Most op
codes are on ly one byte long, but since she
runs app roximate ly ten times slower than
eq ui va lent 6502 code, SWEET16 should be
employed on ly when code is at a premiulll
or execution speed is not. As an exa illple of
her usefulness, I have estimated that about
1 K bytes could be weeded out of Illy 5 K
byte App le- II BAS IC interpreter with no
observable performance degradation by
se lect ively app lying SWEET16.-

43

The Apple- II monitor read
only memory also contains
an interpreter program
called SWEET/6 which
can be used from machine
language programs to im
plement 76 bit arithmetic
operations. This facility
can prove quite useful) for
example, in calculating ad
dresses, and serves as an
extension of the instruc
tion set of the 6502 which
is reached by the jSR
SWEET/6 escape sequence
in code.

	Cover
	Index
	In This BYTE
	Editorial: Surveying the Field
	Letters
	A Catalog of Liberating Home Computer Concepts
	Artificial Intelligence, An Evolutionary Idea Part 1: An Overview
	System Description: The Apple-II
	What's New?
	Come Upstairs and be Respectable
	Interfacing With an Analog World - Part 1
	What's In a Floating Point Package?
	The 8080 High Level Language Project of Peter Skye, Continued
	Using a Keyboard ROM
	Implementing the Tiny Assembler
	A Guide to Baudot Machines: Part 2, Interfacing Techniques
	BYTE's Bits
	New ASCII Standards
	Classified Ads
	What's New?
	BYTE's Bugs
	All This Just to Print a Quotation Mark?
	8080 Programming Notes
	Improving Quadratic Rehash
	What's New?
	Book Reviews
	Ask BYTE
	BYT's Bits
	Clubs and Newsletters

