
Whole ALTO World Newsletter
Technology and Tools

XEROX February 28, 1978

SPECIAL NOTE

NEW OPERATING SYSTEM· As previously announced, the timestandard implementation
is being changed. This last week a new OPERATING SYSTEM and BRAVO were released.
As future releases of this and other subsystems will not necessarily operate properly with the
old operating system, you should change over as soon as possible by retrieving and
executing NEWOS.cm from your local IFS or MAXC. You will need about 300 free pages
on your disk. Check with your local support people for special procedures. The
documentation, < AltoDocs> OS.press, has been revised.

GENERAL NOTES

WHOLE ALTO WORLD MEETING· The Whole Alto World meeting was hosted by Liz
Bond of XEOS in Pasadena on February 7, 1978. Fifty- five people, representing virtually
every Alto using group, attended.

The Distributed Message System(DMS), an upcomming, Alto- based replacement for the
MAXC MSG system, was described by Frank Ludolph. Under DMS, messages are stored on
IFS stations (or MAXC for the immediate future) only during transit. Received messages
will be stored on the user's Alto disk in one or more user- designated files managed by Alto
resident software. The user interface will be familiar to Alto users, consisting of several
windows, menus, and Bravo style editing facilities. Although it is a research project, it is
expected that DMS will be available to MAXC MSG users this summer.

Dick Sonderegger, SD Support, reports that MESA is now available through the Whole Alto
World coordinator on a limited basis, by specific request, and depending on the proposed
application. The language is still evolving and should not be used for long term
development projects. Questions and problems should also be channeled through the
coordinator's office to < SDsupport> .

Barry Smith, Sheldon Raizes, Terry Anderson, and lrv Keschner, lawyers with the Xerox
Patent Department, attended the meeting to discuss the methods used to protect intellectual
property, trade secrets, patents, and copyrights, as they apply to the Alto. Barry will be
working with W A W in the near future to develop written material on this subject. The
material will be printed in the Newsletter when it becomes available.

Terry Haney spoke on SPG's board repair activity. Boards should be sent to Terry, along
with a description of the problems and, if from Orbit or Dover, a copy of the printer's
output. Boards are logged and their repair scheduled in conjunction with SPG's other
activities.

Jim Hall announced that his 1200 group is very interested in providing maintenance service
for as many Altos as possible. Existing spares inventories can be turned in for credit.
Contact Jim for pricing particulars.

Whole ALTO World Newsletter

The 7th Alto build will proceed on schedule according to Doug Stewart. This will be the
last Alto build. There has been some difficulty obtaining 7000 bases for the Dover build
(marketing has been quite successful in placing them recently), but it is not expected to
significantly delay Dover deliveries.

Sam Losh of XEOS reports that Sequoia development is continuing. He requested that
organizations interested in obtaining Sequoias contact him. If there is sufficient interest,
deli veries could begin in the fall.

John Ellenby briefly described Advanced Systems Division's role in marketing test probes
based on Alto technology. ASD has requested information on the Fuji Xerox mag brush
developer, used on their 7200, for possible retrofit to Dover. The unit would improve solid
area development. Additional information will be printed in the Newsletter as it is
available.

The reasons for developing Altos as gateways were outlined by Ted Strollo. Essentially, the
current Novas present maintenance problems, the small memory (32K) prevents further
software development, and the Nova operating system is not as malleable as the Alto's. The
number of gateways is expected to increase to as many as ten this year. Though the DO will
eventually be used in this capacity, they will not be available for this application for some
time.

The meeting was then adjourned to permit attendees to see the Boca Raton Insurance tape,
hosted by John Ellenby, and demonstrations of the touch screen (Dave Moulding), Smalltalk
(Alan Kay), FIRST (Bob Datolla), and HSIL (Marion Suggs, Paul Lam).

ALTO MAINTAINERS MEETING· A meeting of Alto maintainers was held of February
8th, 1978 at EI Segundo. The meeting was hosted by Doug Stewart, SPO. The primary
subjects of discussion were hardware problem areas, centralized repair reporting, and SPG
repair service.

The biggest problem area seemed to be the disk drives. Typical adjustments for the read
gate are 460/440 n sec for the long/shoft one shots though this may vary from drive to
drive. Also, the write head current is normally cut past track 128 due to the reduced track
length. Cutting resistor F- 63 on the J-I0 board to raise write head current is common but
Diablo advises against it suggesting instead that the value of resistor H - 64 (part of the same
voltage divider network) be varied starting with lK and working down as necessary. The
heads should be cleaned periodically (approximately 3 months) using a lint free material
such as TexWipes. Q- Tips should not be used as they will leave fibers on the head.
Aligmnent is generally performed after cleaning heads. So~e groups keep spare heads for
replacements.

The 15 volt Sorenson power supply (and to an extent the 12 volt supply) is the other major
problem area~ As these units are under a five year warranty they should be returned to the
manufacture. Sorenson will also update units returned for repair.

It's useful to have a few memory chips on hand as this is the most common chip failure and
it is easy to repair. Bad 16K memory chips should be returned to Terry Haney for failure
evaluation. Memory Chips rnay be purchased from SPO. These are the only chips available
from that group.

Keyboards have multiple character and mechanical sticking problems. The Key test
diagnostic can be used to adjust the key producing multiple characters. The electronics are
on the AIM module and keyboard printed wiring board.

2

Whole ALTO World Newsletter

Modules will be repaired by spa in conjunction with their other activities. No headcount is
specifically assigned to repair acti vity. Boards should be returned to Terry Haney along with
a description of the problem and, if applicable, a copy of printer output.

There is considerable interest in developing a repair data base. The only data of this type
currently available is maintained by Jim Hall's 1200 group on the machines maintained by
them under contract. Doug Stewart will set up a mechanism for collecting failure
information including net address, date, subsystem affected, serial number (if applicable),
failure symptoms, and corrective actions. Jim Iverson reports that a paper log is currently
being kept for each machine in his group for the convenience in the multiple user
environment and to identify recurring failures in a specific unit.

It was requested that Frank Ludolph set up a system to more quickly disseminate
maintenance information.

ALTO MAINTAINTER'S MESSAGE LIST· An immediate result of the Alto maintainers
meeting is the establishment of a MAXC MSO distribution list file,
< Secretary> AltoMaintainers.msg, to Simplify the communication of general interest
information among Alto maintainers. To use this feature when sending a message, the
response to ''TO:'' is "t b < Secretary> AltoMaintainers.msg CR CR It. The rest of the sndmsg
procedure is normal. The message will be sent to all accounts listed in the .msg file.

MESSAGING FOR SPECIAL INTEREST GROUPS . The same messaging mechanism
referred to in the preceeding item is used by several special interest groups including; AIS,
PROM (ProLog users), SIL, and AltoMaintainers. If you are actively involved in any of
these are sndmsg to Jennette < Jenkins> for inclusion. A complete listing of all distribution
lists can be retrieved from [MAXC] < Secretary> All.masterlist.

DON'T LEAVE YOUR DISK IN AN ALTO· As pointed out in a recent issue of SDD's
Randotll Items, a disk is locked inside the Alto's disk drive when power is removed from the
unit or when the 15 volt power supply fails. Failure of this supply is one of the most
common Alto ailments. It is suggested that you not leave your disk in an Alto overnight.

TOOLS

HARDWARE

NEW HARDWARE MANUAL - The Alto Hardware manual has been revised and made
available in Press format. If your print server does not have two disk drives, the file
< AltoDocs> AltoHardware.press may have to be broken into two pieces using PRESSEDIT
and the pieces sent to the printer.

ORBIT BUG· Severo Ornstein reports that there is a timing problem in the Orbit adapter.
It appeared that Pimlico had problems aligning the sucessive color passes on a page. In
reality the Output Scanline counter (SLN /SLWN) wasn't resetting properly due to a race
situation resulting. from an ding the clock pulse with the clear level using an N163
(synchronous clear). This situation also exists with Dover but isn't very noticable because it
shifts the image by only a fraction of a band.

The fix is simple; replace the three N163s in locations 02, 03, and 04 on the Input board
with N161s. Severo suggests that the fix be made on all Orbits, regardless of attached
printer, because it could create a very difficult bug to locate someday if printers are
exchanged.

3

Whole ALTO Wortd Newsletter

MAKING A DUAL· DRIVE ALTO· Doug Stewart has written a memo listing the items
necessary to connect a second drive to the Alto. All items can be ordered directly from
Diablo. The memo is appended to the Newsletter.

DISK DIAGNOSTIC DOCUMENTATION Jim Cucinitti recently wrote some
documentation for the Model 31 disk diagnostics that have been in use for quite sometime.
It describes diagnostic initiation, use of the debugger, understanding the failure data, and
modification of the diagnostics. It is intended for maintainers only. The document, which
includes assembler listings of the programs, can be retrieved from
[MAXC] < AltoDocs) DiskDiag.press.

PROM DESTRUCTION BY THE PROLOG PROGRAMMER· Tom Chang informs us that
the ProLog PROM programmer will often destroy the last location of a PROM in socket PM
when powered down. The ProLog people advise that PROMs should always be inserted and
removed from the socket with the power on.

COLOR DISPLAYS AND THE ALTO - Every now and then Dick Shoup is asked about the
use of color displays with the Alto. While it has been done, the results were generally
unsatisfactory. Dick has written a memo on this topic which has been attached to this
Newsletter.

SOFTWARE

In general, the subsystems, packages, and documentation indicated here will be available
from your local IVY server under the directories < Alto) and < AltoDocs). If they are not
available, or if you are in doubt as to the version, they may be retrieved from [MAXC]
(same directories). Files stored under other directories are on [MAXC] unless otherwise
indicated, e.g. [XEOS].

NEW RELEASE: CONDENSE.RUN - This recently released program by Keith Knox will
retrieve the screen bitmap from the SWAT and SW A/TEE files. The bitmap can be
displayed or output to a file in either AIS or PRESS format. Documentation will be
forthcomming shortly, but isn't really required for operation as the menus tell all. Retrieve
[WRC] < IPA) Subsystems)Condense.run.

NEW RELEASE: AISdump.run - A new dump program, part of the AIS System, will write
out the pixels as decimal values for an 8 bit/pixel or 1 bit/pixel AIS file to a file on the
Diablo disk. Since the dump file is a text rile, it is a 4:1 or 16:1 expansion, so be careful
how large a window you choose. Retrieve [WRC] < AIS) Subsystems) AISdump.run.

4

Whole ALTO World Newsletter

ReReleases • Subsystems

AISmagnify . This new version, 2.0, has a menu, runs a little faster, and some new features.
Retrieve [WRC] < AIS> Subsystems> AISmagnify .run. The documentation is
[WRC] <AIS> MEMOS> AISmagnify.press.

BRA VO • The new version, 7.1, contains bug fixes and implements the new time standard.
It will be retrieved and installed automatically when installing the new operating system.
Documentation on the new color facilities can be retrieved from
[IRIS] < Bravo> ColorBravoChanges.bravo.

CHA T· This rerelease, TTY version 9, Display version 15, contains bug fixes and minor
improvements. Retrieve < Alto> Chat.run. The documentation, Chat. tty , is updated to
include the I and 0 commands which toggles the USER.cm entry TYPESCRIPTCHARS.

COPYDISK • This subsystem, found on boot servers, has been updated to include the new
time standard.

DMT • This subsystem, found on boot servers, has been updated to include the new
timestandard. Also, the bug in the Dec. 10 version, which fails to indicated the bad RAM
chip location, has been corrected.

IFS . The new release, 1.14, includes commands for accessing and manipulating file
protections. Users should retrieve and read < IFS> HowToUse.prcss.

PRESSEDIT . An experimental release of this subsystem can be found on
<Newman> PressEdit.run. The documentation PressEdit.tty is on the same directory. It
provides a new, simpler method of combining illustrations with text documents. Official
release will occur in March after sufficient testing. The experimental version is reasonable
robust.

PROM· The nature of the changes is unknown to me. Retrieve < Alto>PROM.run. New
documentation is available on < EOD> PROM.bravo.

seA VENGER - The nature of the changes is unknown to me. The documentation is
unchanged. Retrieve < Alto> Scavenger.run.

SETTIME - The new version implements the new timestandard. Is is automatically
retrieved when installing the new operating system with NewOS.cm.

SIL . Several changes have been made and are summarized in < SIL> SILupdates.press.
Retrieve < SIL> SlL.run. The documentation SILmanua1.press and SILsummary.press, also on
< SIL> , have been revised.

ReRclcases - Packages

ALTODEFS, ALTOFILESYS, DISKS, STREAMS, SYSDEFS . These definition files have
changed in conjuction with the new operating system. If they currently reside on a disk they
will be updated when NewOS.cm is run. For a description of changes see the change history
in the rereleased OS Manual.

5

Whole ALTO World Newsletter

TECHNOLOGY

This month's paper, GUS, A Frame- Driven Dialog System by Daniel Bobrow, Ronald
Kaplan, Martin Kay, Donald Norman, Henry Thompson, and Terry Winograd, is the third
in a series on methods of making machines more amenable to the naive user. While this
work is strictly research and not being performed on Altos, it gives us a glimpse of possible
future directions.

The Understander project at PARe is exploring the process of language comprehension and
the cognitive structures and operations which underlie it. GUS was written to assess
progress and suggest area of future effort.

The Whole Alto World Newsletter is a monthly publication for Xerox employees that use the Alto. It is not
to pe shown to non· Xerox people. Copies are available on [MAXC] < AltoDocs> WAWnews.press or may be
obtained from the editor, Frank Ludolph, XEOS, by messaging <Ludolph> or calling Intelnet 8*923·4356.

6

GUS, A Frame- Driven Dialog System

Daniel O. Bobrow, Ronald M. Kaplan, Martin Kay,
Donald A. Norman, Henry Thompson, Terry Winograd1

Xerox Palo Alto Research Center
3333 Coyote Hill Road

Palo Alto, California 94304

GUS is the first of a series of experimental computer systems that we intend to construct as
part of a program of research on language understanding. In large measure, these systems
will fill the role of periodic progress reports, summarizing what we have learned, assessing
the mutual coherence of the various lines of investigation we have been following, and
suggesting where more emphasis is needed in future work. GUS (Genial Understand er
System) is intended to engage a sympathetic and highly cooperative human in an English
dialog, directed towards a specific goal within a very restricted domain of discourse. As a
starting point, GUS was restricted to the role of a travel agent in a conversation with a client
who wants to make a simple return trip to a single city in California.

There is good reason for restricting the domain of discourse for a computer system which is
to engage in an English dialog. Specializing the subject matter that the system can talk about
permits it to achieve some measure of realism without encompassing all the possibilities of
human knowledge or of the English language. It also provides the user with specific
motivation for participating in the conversation, thus narrowing the range of expectations
that GUS must have about the user's purposes. A system restricted in this way will be more
able to guide the conversation within the boundaries of its competence.

MOTIV A TION AND DESIGN ISSUES

Within its limitations, GUS is able to conduct a more- or-less realistic dialog. But the
outward behavior of this first system is not what makes it interesting or significant. There
are, after all, much more convenient ways to plan a trip and, unlike some other artificial
intelligence programs, GUS does not offer services or furnish information that are otherwise
difficult or impossible to obtain. The system is interesting because of the phenomena of
natural dialog that it attempts to model and because of the principles of program
organization around which it was designed. Among the hallmarks of natural dialogs are
unexpected and seemingly unpredictable sequences of events. We describe some of the forms
that these can take below. We then go on to discuss the modular design which makes the
system relatively insensitive to the vagaries of ordinary conversation.

1 This work was done by the language understander project at the Xerox Palo Alto Reseach Center. Additional
affiliations: D. A. Norman, University of California. San Diego; H. Thompson, University of California,

Berkeley; and T. Winograd, Stanford University. To appear in Artificial Intelligence, Spring 1977 (8:1)

Problems of natural dialog.

The simple dialog shown in Figure 1 illustrates some of the language- understanding
problems we attacked. (The bracketed numbers are for reference in the text). The problems
illustrated in this figure, and described in the paragraphs below, include: allowing both the
client and the system to take the initiative, understanding indirect answers to questions,
resolving anaphora, understanding fragments of sentences offered as answers to questions,
and interpreting the discourse in the light of known conversational patterns.

Mixed Initiative. A typical contribution to a dialog, in addition to its more obvious
functions, conveys an expectation about how the other participant will respond. This is
clearest in the case of a question, but it is true of all dialog. If one of the participants has
very particular expectations and states them strongly whenever he speaks, and if the other
always responds in such a way as to meet the expectations conveyed, then the initiative
remains with the first participant throughout. The success of interactive computer systems
can often be traced to the skill with which their designers were able to assure them such a
dominating position in the interaction. In natural conversations between humans, however,
each participant usually assumes the initiative from time to time. Either clear expectations
are not stated or simply not honored.

GUS attempts to retain the initiative, but not to the extent of jeopardizing the natural flow of
the conversation. To this extent it is a mixed- initiative system (see Carbonell, 1970a, 1970b).
This is exemplified in the dialogue at [1] where the client volunteers more information than
GUS requested. In addition to his destination, the client gives the date on which he wants to
travel. Line [3] illustrates a case where the client takes control of the conversation. GUS

had found a potentially acceptable flight and asked for the client's approval. Instead of
either giving or denying it, the client replied with a question of his own.

Indirect answers. It is by no means always clear what constitues an answer to a question.
Frequently the purported answer is at best only a basis on which to infer the information
requested. For example, when GUS asks "What time do you want to leave?" it is seeking
information to constrain the selection of a flight. The client's response to this question, at
[2], does constrain the flight selection, but only indirectly. In general, the kinds of
inference necessary to interpret indirect answers can be very complex. GUS can handle the
problem in its simpler manifestations, thanks largely to the very narrow expectations it has
about the subject matter and the client's goals.

Resolving anaphora. A central issue in dialog is ensuring that both parties understand a
given word or phrase as referring to the same object or event (see Norman and Rumelhart,
Chapter 3, 1975 for a discussion of the general problem of reference). One problem occurs
when a short phrase refers back to sOlnething that was introduced earlier. GUS provides for
this problem in some of its simpler manifestations. At line [3], for example, the client's
query refers to the flight m·entioned in GUS'S immediately preceding utterance. In [4] there ,
is a reference to the flight mentioned earlier in the conversation, at (2). Note that "next
flight" in [3] was to be interpreted relative to the order of flights in the airline guide
whereas "first one" in [4] refers to the order in which the flights were mentioned. Another

2

implicit referent underlies the use of "Friday" to specify a date in [6]. Resolution of this
reference requires some complicated reasoning involving both the content and the context of
the conversation. Since May 28th has been given as the departure date, it must presumably
be the following Friday that the client has in mind. On the other hand, suppose that the
specifications were reversed and Friday had been given as the departure date at line [1]. It
would then be most readily interpretable as referring to the Friday immediately following
the conversation.

GUS: Hello. My name is GUS. I can help you plan a simple trip by air.
Where do you want to go?

[1] Client: I want to go to San Diego on May 28 .

GUS: What time do you want to leave?

[2] Client: I must be in San Diego before 10 AM

GUS: Would you like P.S.A. flight 102 that arrives at 9:15 AM?

[3] Client: What is the next flight?

GUS: Air California flight 310 that leaves at 8:30 AM and arrives at 10:00 AM

[4] Client: I'll take the first one

GUS: In what name should I make a reservation, please?

[5] Client: Dan Bobrow

GUS: I have confirmed the following flight:
P.S.A. flight 102 on Wednesday May 28 from San Jose to San Diego
that leaves at 7 :30 AM and arrives at 9 :15 AM.
What date do you want to return on?

[6] Client: On Friday in the evening

GUS: Would you like the flight that leaves at 7:45 PM?

[7] Client: That's fine.

GUS: I have confirmed the following flight:
P.S.A. flight 307 on Friday May 30 from San Diego to San Jose
that leaves at 7:45 PM and arrives at 9:30 PM
Thank you for calling. Goodbye.

Figure 1. A transcript of an actual dialog with GUS

Sentence fragments. Utterances in natural conversation are by no means always complete
sentences. This is not to say that there are no rules governing the ways in which fragments
can be used. We collected a number of dialogs between people and examined the sentence

3

fragments that occurred: most appeared as answers to direct questions. Furthermore, a rule
can almost invariably be derived from a question that will convert a fragmentary answer into
a complete sentence expressing the same information. For example, the client's response in
[5] to the request for a name is not a sentence but, when inserted in the blank space in the
skeleton "You should make the reservation in the name of __ It, it yields a sentence.
Nonnal processing of the sentence so constructed gives the required interpretation of the
fragment. This works even for the fragment in [6] which is not even a complete phrase.1

IThe SRI speech system (Walker, et al., 1975) uses a number of other techniques for handling a different set of
fragments.

These skeletons are systematically related, in the sense of transformational grammar, to the
corresponding questions. The blank space in the skeletons usually occurs at the end. If SgaU
and the linguists of the modern Prague school are right, then this follows from a strong
tendency to organize sentences so that given information comes at the beginning and new
infonnation at the end. In this case, the given information is clearly that which is shared by
the question and its answer.

Conversational patterns. Conversations conform to patterns, which are still only poorly
understood, and there are specialized patterns that are used in special circumstances such as
those that obtain in a travel agency. Realism requires that GUS fit its conversational strategy
to these patterns. For example, flights are usually specified by departure time, but in
response to [2], GUS specifies an arrival time, because the client had specified the arrival
time to constrain the choice of flights. This is in accordance with a typical conversational
convention; a speaker says as little as will suffice to communicate the point to be made.
Grice [1975] calls these conventions conversational postulates and implicatures.

It seems also to be important to use conversational implicatures with respect to the goals of
the client and the system in interpreting and generating the dialog (see Gordon & Lakoff
(1972) for a general discussion of this issue). For example, in [1] the client says where he
wants to go. GUS interprets this as a request for an action, that is, inserting the appropriate
information into the travel plan being generated.

Principles of program organization

One of the major methodological issues we addressed in designing and building GUS was the
question of modularity. We realize that language understanding systems, and other systems
exhibiting some degree of intelligence, will be very large and complicated programs, and the
flow of processing within them will be correspondingly complex. As Simon (1969) has
pointed out, one way of reducing the complexity of a system is to decompose it into simpler,
more readily comprehensible parts, and to develop and debug these in isolation from one
another. When the separate modules have been constructed, however, the task of integrating
them into a single system' still remains. This can be difficult: truly complex systems are
more than just the sum of their parts; The components, when put together, interact in subtle

4

but important ways. We implemented GUS in order to determine whether a modular
approach for a dialog system was at all feasible and to test our notions of what reasonable
lines of decomposition might be. We are aware of alternative decolnpostions, and are not
committed to this one; it was convenient given the program modules already available, and
the issues we wished to focus on. GUS provided a context in which to explore tools and
techniques for building and integrating independent modules.

The major knowledge- oriented processes and structures in GUS- - the morphological analyzer,
the syntactic analyzer, the frame reasoner, and the "language generator- - were built as
independent processes with well defined languages or data structures to communicate across
the interfaces. They were debugged separately, and tied together by means of an overall
asynchronous control mechanism.

Control: The organization of the system, is based on the view that language- understanding
systems must operate in a multiprocess environment (Kaplan, 1973b, 1975). In a system with
many knowledge sources and a number of independent processes, some part of the
mechanism must usually be devoted simply to deciding what shall be done next. GUS puts
potential processes on a central agenda. GUS operates in a cycle in which it examines this
agenda, chooses the next job to be done, and does it. In general, the execution of the selected
task causes entries for new tasks to be created and placed on the agenda. Output text
generation can be prompted by reasoning processes at any time, and inputs from the client
are handled whenever they come in. There are places at which information from a later
stage (such as one involving semantics) are fed back to an ealier stage (such as the parser). A
supervisory process can reorder the agenda at any time. This process is similar in function
to the control module in the BBN SpeechEs system (Woods, 1974; Rovner, Nash- Webber &
Woods, 1974), except that it can resume processes which are suspended with an active process
state. Preserving the process state is necessary because the flow in the system is not
unidirectional: for example, the state of the syntactic analysis' cannot be completely
abandoned when domain dependent translation starts. If a semantically and pragmatically
appropriate interpretation of an utterance cannot be found from the first parsing, the
syntactic analyzer must resume where it was suspended. INTERLISP'S coroutine facility makes
it possible to completely preserve the active state of the various processes (Teitelman, 1976;
Bobrow & Wegbreit, 1974).

Procedural attachment. Broadly speaking, procedural attachment involves redrawing the
traditional boundary between program and data in such a way as to give unusual primacy to
data structures. Most of the procedures that make up a program, instead of operating on
separate data structures, are linked to those structures and are activated when particular items
of data are manipulated in particular ways. This technique lies at the heart of the reasoning
component which is described in more detail later. It provides a natural way of associating
operations with the classes or instances of data on which they are to operate. It is in some
ways extensions of ideas found in SIMULA (Dahl & Nygaard, 1966) and SMALLTALK

(Goldberg and Kay, 1976).

Monitoring and debugging: In a multiprocessing system with processes triggered by
procedures attached to complex data structures, special tools are needed for programmers to

5

monitor the flow of control and changes in the data structures. Tightly linked with the
agenda scheduler there is a central monitor with knowledge about how to summarize the
current actions of the system. The monitor interprets special printing instructions associated
with potential actions and particular items of data. In effect, the principle of procedural
attachment has been extended to debugging information.

External data-bases: We believe that an important application of specialized dialog systems
like GUS may be to help users deal with large files of formatted data. In the travel domain,
the Official Airline Guide is such an external data- base. GUS can use an extract of this data­
base, but the information in the file does not form part of its active working memory for
the same reason that the the information in the Official Airline Guide does not have to be
memorized by a travel agent. Only that portion of the data base relevant to a particular
conversation need be brought into the working memory of the system.

6

PROCESSES AND KNOWLEDGE BASES

Figure 2 illustrates the knowledge structures and processes in GUS. Each numbered row
corresponds to a single knowledge based process in the system. The input to each process is
shown in the left hand column. Each input is labelled with a number in parentheses
indicating the row number of the process which produces it. Processes usually provide input
to the ones listed below them. The third column names the process which produces the
output structures specified in the fourth column, using for the processing the permanent
knowledge bases specified in column two.

Input Structures Permanent Knowledge
Structures

1. Text String
word

(input)
structures

Stem dictionary;

Morpholog ical

'rules

2. Query context(6); Transition
of a

Chart(1) net grammar
sentence

3. Parsing of a
frame

sentence (2)

4. Case-frame
Frame change

structure (3)
description

Case-frame

dictionary

Speech patterns;

Domain specific

frame forms

5. Frame change Prototype frames
Frame change

descriptions(4,5); and attached
descriptions

Current frame procedures
response

instances (5)
descriptions;

Processes Output Structures

Dictionary lookup;

Morpholog ical

analysis

Syntactic

analysis

Case-frame

analysis

Domain dependent

translation

Frame

reasoning

Chart of

data·

Parsing

Case-

structure

Output

Current

7

frame
instances

6. Output response Dialog query map; Response
Eng !ish text;

description (5) Flight description generation Query
context

template

Figure 2. Knowledge structures and Processes in GUS

Figure 3 shows the output structures of the earlier stages of processing of the sentence "I
want to go to San Diego on May 28 ft. Starting with an input string of characters typed by
the client, a sequence of words is identified by a lexical analyzer consisting of a dictionary
lookup process and a morphological analysis. The analysis program has access to a main
dictionary of more than 3,000 stems and simple idioms and a body of morphological rules
specifying how the information in the dictionary can be used to partition character sequences
into known lexical items (Kay & Kaplan, 1976). The output of this stage is a chart (Kay,
1973), a table of syntactic and semantic information for use by the parser.

CLIENT: I want to go to San Diego on May 28

[S MOOD =DCL ... the syntactic analysis of the input
SUBJ =[NP HEAD =[PRO CASE =NOMIN NUMBER =SG ROOT =1]]
FVERB =[V TENSE =PRESENT ROOT =WANT] HEAD =WANT
OBJ =[S MOOD =FOR-TO

SUBJ =1
HEAD =[V TENSE =PRESENT ROOT =GO]
MODS =(

[PP PREP =[PREP ROOT =TO]
POBJ =[NP HEAD =[NPR PROPERTYPE =CITY-NAME

ROOT = SAN-DIEGO]]]
[PP PREP =[PREP ROOT =ON]

POBJ =[NP HEAD =[NPR PROPERTYPE =DATE-NAME
MONTH =MA Y DAY =2811])]]

[CLIENT DECLARE ... the case' frame structure
(CASE FOR WANT IE (TENSE PRESENT)

(AGENT (PATH DIALOG CLIENT PERSON»
(EVENT (CASE FOR GO (TENSE PRESENT)

(AGENT (PATH DIALOG CLIENT PERSON»
(1'0- PLACE (CASE FOR CITY

(NAME SAN- DIEGO»)
(DATE (CASE FOR DATE

(MONTH MAY)

8

(DAY 28]

CMD: [CLIENTDECLARE ... the domain dependent translation, a
(FRAME ISA TRIP- LEG ... frame change description

(TRA VELLER (PATH DIALOG CLIENT PERSON»
(TO- PLACE (FRAME ISA CITY

(NAME SAN- DIEGO»)
(TRA VEL- DATE (FRAME ISA DATE

(MONTH MAY)
(DAY 28]

Figure 3. Processing the client's first utterance

The syntactic analyzer is based on the General Syntactic Processor (Kaplan, 1973a). Using a
transition- network grammar and the chart, the parser builds one or more canonical syntactic
structures, depending on whether or not the sentence is syntactically ambiguous. It finds one
parse, and can continue to find others if the sentence is ambiguous and the first parse is
rejected as uninterpretable by a later process. The syntactic analysis of the input sentence is
shown in Figure 3.

The case- frame analysis uses linguistic knowledge associated with individual lexical items to
relate their appearance in canonical syntactic structures to their uses in a semantic
environment. It uses a dictionary of case- frames based on the ideas of case grammar
originated by Fillmore (1968; see Bruce, 1976 for a general review of case systems). This
cOlnponent uses knowledge about such things as selectional restrictions and the mapping
between surface cases (including prepositions) and semantic roles. As seen in Figure 3, the
cases for GO are AGENT, TO- PLACE, and DATE.

As we have already observed, interpretation of an utterance must include knowledge of
conversational patterns for the appropriate domain. Domain dependent interpretations of
utterances were implemented by a simple structure- matching and reconstruction program
that operates on case- frames. The example in Figure 3 illustrates how the domain- dependent
translation module handles a COlnmon conversational pattern for the travel domain: it
interprets a statenlent of desire (the WANT IE) as an instruction to insert the specified event
into the trip plan being constructed. In addition, the case frame involving GO is transformed
into a description of the TRIP- LEG which is part of the planned trip, with the AGENT of GO

beconling the TRAVELLER in the TRIP- LEG and the DATE becoming the TRA VEL- DATE. This
simple translation Inechanism is obviously very limited; in a more realistic system, the
purposes of the client would have to be understood more deeply.

The frame reasoner component of the system was the focus of most of the research and
developnlent. It was based on the assumption that large scale structures closely tied to
specific procedures for reasoning constitute a framework for producing a mixed initiative
dialog system. It uses the frame change description (labelled CMD in Figure 3) to fill in the
appropriate information in the trip plan it is building and trigger associated reasoning, as

9

described later.

The generation of output English is guided by a query- map, a set of templates for all the
questions that might be asked by the system. GUS uses a table lookup mechanism to find the
appropriate template and generates the English by filling in the template form. This simple
generation mechanism is sufficient for the dialog system; generation was not one of the areas
of substantial work.

The module that generates questions for the client simultaneously produces one or more
skeletons into which his responses can be inserted, if they do not prove to be sentences in
their own right. What is being done here is surprisingly simple and works well for most of
the fragments we have encountered in response to simple WH- questions. Note that the
language generator communicates with the syntactic analyzer using English phrase fragments
rather than using a specially constructed formalism. This contrasts with other approaches to
the fragment problem, in which the various components of the system are more deeply
affected.

10

THE REASONING COMPONENT

Frames: It is widely believed in artificial intelligence that intelligent processing requires
both large and small chunks of knowledge in which individual molecules have their own
sub- structure. Minsky's 1975 paper on frames discusses the issues and suggests some
directions in which to proceeed. But, as Minsky stated, his ideas were not refined enough to
be a basis for any working system. Our intuitions about the structure of knowledge resemble
Minsky's in many ways, and we have appropriated the word frame. However, our
conceptions are by no means identical to Minsky's, and the two notions should not be
confused. The frame structures used in this system were a first step towards a more
comprehensive knowledge representation language whose current development is described in
Bobrow and Winograd (1977).

Frames are used to represent collections of information at many levels within the system.
Some frames describe the sequence of a normal dialog, others represent the attributes of a
date, a trip plan, or a traveller. In general, a frame is a data structure potentially containing
a name, a reference to a prototype frame, and a set of slots. Frame names are included
primarily as a mnemonic device for the system builders and are not involved in any of the
reasoning processes. In fact, names are not assigned to any of the temporary frames created
during a dialog.

If one frame is the prototype of another, then we say that the second is an instance of the
first. A prototype serves as a template for its instances. Except for the most abstract frames
in the permanent data base, every frame in GUS is an instance of some prototype. Most
instances are created during the process of reasoning, although some (for example those
representing individual cities) are in the initial data base.

A frame's important substructures and its relations to other frames are defined in its slots.
A slot has a slot- name, a filler or value, and possibly a set of attached procedures. The
value of a slot may simply be another frame or, in the case of a prototype, it may be a
description constraining what may fill the corresponding slot in any instance of the given
frame. Figure 4 shows the prototype frame for date and the specific date May 28, which has
no external name. The fact that it is an instance of date is indicated by the keyword ISA

followed by the prototype name.

The date prototype illustrates several of the ways in which the values for instance slots can
be described. For example, the slot labelled MONTH specifies that only a name can be used as
value; that is, only a literal LISP atom. GUS interprets a standard set of type terms such as
name, integer, list, and string. The slot for WEEKDAY stipulates that a value for that slot
must be a member of the list shown in the frame. 'The slot DAY can only be filled by an
integer between 1 and 31. The terms BOUNDED-INTEGER and MEMBER have no special
meaning to the interpreter. Any LISP function may occur in this position as a predicate
whose value must be non- NIL for any object filling the slot.

Not all of the slots of an instance frame need to be filled in. For example, in May 28, only
the MONTH, and DAY are filled in, and not the WEEKDAY. A prototype frame provides slots

11

as placeholders for any data that might be relevant, even though it may not always be
present. Only those slot values which are required for the current reasoning process need be
put into instances.

[DATE
MONTH
DAY
YEAR
WEEKDAY

NAME
(BOUNDED- INTEGER 1 31)
INTEGER
(MEMBER (SUNDAY MONDAY

FRIDA Y SA TURDA Y)]

a. Prototype for date

[ISA DATE
MONTH MAY
DAY 28]

TUESDA Y WEDNESDAY THURSDAY

b. The instance frame for May 28

Figure 4. Examples of frames

Procedural attachment: We have already referred to procedural attachment, a concept first
discussed by this name by Winograd (1975), as a central feature of GUS. Procedures are
attached to a slot to indicate how certain operations are to be performed which involve
either the slot in the given frame or the corresponding slot in its instances. We have found
that there are many slots for which some processing is best done by idiosyncratic procedures.
For example, there may be special ways of finding fillers for them or for doing other kinds
of reasoning about them. This might include verifying that the value in an instance is
consistent with other known information or propagating information when the slot value is
obtained.

The procedures associated with slots fall into two general classes: servants and demons.
Demons are procedures that are activated automatically when a datum is inserted into an
instance. Servants are procedures that are activated only on demand. The expanded date
prototype in Figure 5 contains exalnples of both classes. On the slot WEEKDAY there is a
demon marked by the keyword WHENFILLED and a servant nlarked by the keyword TOFILL.

When a value is filled into the WEEKDAY slot of a date instance, the WHENFILLED statement
on the prototype causes the interpreter to invoke the demon FINDDATEFROMDAY. This
procedure attempts to compute the appropriate date to fill the other slots in the frame, using
the name of the day just entered and contextual information to identify the value uniquely.

The servant GETWEEKDA Y on the same slot is only invoked when the name of the week day

12

is needed. The requirement is satisfied by calling the LISP procedure GETWEEKDA Y with the
current instance as an implicit argument. The servant attached to the slot YEAR indicates
how a default value can be filled in. If the year is given by the client, then this servant will
never be activated. However, if the client does not mention the year explicitly, the system
will fill in the default value 1975 when any part of the reasoning process calls for it.

[DATE
MONTH
DAY
YEAR
WEEKDAY

SUMMARY

NAME
(BOUNDED- INTEGER 1 31)
INTEGER (TOFILL ASSUME 1975)
(MEMBER (SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY

FRIDA Y SA TURDA Y»
(WHENFILLED FINDDA TEFROMDA Y)
(TOFILL GEJWEEKDA Y»

(OR (LIST MONTH DAY) WEEKDAY»]

Figure 5. The frame for date with attached procedures and summar!}' form

The system provides a number of standard servant procedures. ASKCLIENT causes the client
to be asked for information that will determine the value of the slot. CREATEINSTANCE

indicates that a new instance of a specified prototype should be created and inserted at that
location. Some of the values of the newly created frame may be filled in by the procedure,
others may be left to be filled through later reasoning or interaction with the client. In
addition to standard servants, the builders of the system can program special procedures to
cOlnpute appropriate values, such as the GETWEEKDA Y mentioned earlier.

Summarizing data structures. In Figure 5, the frame for dHte includes a slot with the special
name SUMMARY. A SUMMARY slot appears only in a prototype frame, never in an instance.
It gives a format for describing the instances of the prototype to heJp programmers monitor
and debug the system. Thus, instances of date will be described by printing the month and
day, e.g. (May 28) or, if they are not known, just the day of the week.

13

USING FRAMES TO DIRECT THE DIALOG

Frames are used at several levels to direct the course of a conversation. At the top level, GUS

assumes that the conversation will be of a known pattern for making trip arrangements. To
conduct a dialog, the system first creates an instance of the dialog frame outlined in Figure
6. It goes through the slots of this instance attempting to find fillers for them in accordance
with the specifications given in the prototype. When a slot is filled by a new instance of a
frame, the slots of that instance are filled in the same way. GUS follows this simple depth­
first, recursive process, systematically completing work on a given slot before continuing to
the next. This is how GUS attempts to retain the initiative in the dialog. Notice, however,
that slots may occasionally be filled out of sequence either through information volunteered
by the client or by procedures attached to previously encountered slots.

In Figure 6, boldface atoms are frame names, representing pointers to other frames.
(Substructures for the frames for Person, Date, City, PlaceStay, TimeRange, and Flight are
not shown.) Each of the slots shown in Figure 6 must be filled in during the course of the
dialog, usually by invoking a servant attached to the prototype slot. The servants for some
slots calculate the desired values from other known data, or (as in the case of frames like
TripSpccification) simply create a new frame. The servant ASKCLIENT obtains information
needed to fill a slot by interrogating the client. The default organization of a dialog is
determined by the order of the slots which have ASKCLIENT as servant, since appropriate
questions will be asked if those slots have not been filled by the time they are encountered.

Now let us follow the system as it goes through part of a dialog, with special emphasis on the
process of filling in the slots of frames. The dialog and the relevant information about the
state of the system are shown in Figure 7. This figure is the beginning of an actual
transcript of a session, and the information shown there is provided to allow us (in the role
of system builders) to follow the actions of the system.

The dialog starts when GUS outputs a standard message ("Hello. My name is GUS. I can help
you plan a simple trip by air."). At this point, GUS knows that it is about to conduct a dialog
on travel arrangements, so it creates an instance of the prototype Dialog frame shown in
Figure 6 and starts to try to fill its slots. (From now on, all numbers in brackets refer to the
corresponding lines of the frames of Figure 6. All references to the dialog refer to Figure
7.) The slot CLIENT at [1] contains a servant which fills this slot, when necessary, by
creating a new instance of Person. This is indicated in the first line of the transcript of
Figure 7, where the instance of person is shown as {ISA PERSON}. After the slot is filled in, a
demon associated with the CLIENT slot is triggered, which then puts the same person instance
in the TRAVELLER slot in [16]. GUS fills the NOW slot in [2] by constructing a frame
instance for today's date. It then creates a TripSpecification instance [3], summarized by
ROUNDTRIP TO ? in the transcript of Figure 7, to fill the TOPIC slot [3].

14

Slots

Dialog

[1] CLlEN,};

[2] NOW

[3] TOPIC

TripSpecification

[4] HOMEPORT

[5] FOREIGNPORT

[6] OUTWARDLEG

[7] AWAYSTAY

[8] INWARDLEG

TripLeg

[9] FROMPLACE

[10] TOPLACE

[11] TRAVELDATE

[12] DEPARTURESPEC

[13] ARRIVALSPEC

Fillers Servants Demons

Person Create Link to TRAVELLER

Date GetDate
TripSpecification Create

City
City

TripLeg
PlaceStay
TripLeg

City
City
Date
TimeRange
TimeRange

Default - Palo Alto
Link to OUTWARDLEG,

AWAYSTAY,INWARDLEG

Create

Create

FindFrom HOMEPORT

AskClient
AskClient
AskClient Propose- Flight- By- Departure

Propose- Flight- By- Arrival,
Link to DEPARTURESPEC

[14]
[15]
[16]

PROPOSEDFLIGHTS (Set Of Flight)
FLIGHTCHOSEN Flight AskClient
TRAVELLER Person AskClient

F'igure 6. An outline of key frame structures for our dialog

At this point the Dialog frame has been completely filled in so GUS proceeds to fill in the
slots of the TripSpecification frame. In [4], a HOMEPORT which is a City is required; GUS

assumes, on the basis of an attached servant, that the home port is Palo- Alto. There is no
attached servant to find the FOREIGN PORT in [5], so GUS just leaves that slot empty for the
moment. When a TripLeg instance is created for the outward leg of the journey, GUS begins
trying to fill its slots. A servant for FROMPLACE specifies that it should be filled with the
city used for HOMEPORT in the TripSpecification frame, so PaJoAlto is filled in. The first slot
which has an ASKCLIENT servant is at [10], which requires a city to fill the TOPLACE in the
Trip Leg, which is the OUTW ARDLEG of the TripSpccification [6]. GUS issues the command
(CMD) shown at the bottom of Figure 7, which directs the generation of the English
question. This is done by a rather elaborate table look up: the result is shown as the last line
of Figure 7.

15

GUS: Hello. My name is GUS. I can help you plan a simple trip by air.

CLIENT ={ISA PERSON} in {ISA DIALOG}

TODA Y =(MA Y 15) in {ISA DIALOG}

TOPIC =(ROUNDTRIP TO ?) in {ISA DIALOG}

HOME-PORT =PALO-ALTO in (ROUNDTRIP TO 1)

FROM- PLACE =PALO- ALTO in (TRIP TO 1)

CMD: (GUSQUERY (DIALOG TOPIC TRIP-SPECIFICATION OUTWARD-LEG TRIP-LEG
TO- PLACE CITY»

GUS: Where do you want to go?

Figure 7. The beginning of the transcript for the dialog

We continue the trace of the analysis in Figure 8, starting with the client's response to the
question. The domain dependent translation contains the information needed to fill the
frame slots. The result of the client's English input is that both the TOPLACE [10] and the
TRA VELDATE [11] of the TripLeg are filled in.

The system then continues working its way through the entire tree specified by the frames,
asking questions of the client. Many of the slots have demons which propagate information
to other places in the data structure. For example, when the city that fills the slot
FOREIGNPORT [5] is found, GUS will insert that same City as the place to stay in the
AWAYSTAY [7]. The FOREIGNPORT city also serves as the destination of the OUTWARDLEG of
the trip and the starting point of the return trip (the INWARDLEG). To handle this
information, GUS estabishes two instances of the frame TripLcg, one for the outward leg, the
other for the inward leg, and puts the city names in the appropriate slots.

Once a departure specification (some time range before, near or after the desired flight
departure) is determined, a delTIOn attached to DEPARTURESPEC calls a program which uses
this information to propose a flight. Each proposed flight is added to the slot for
PROPOSEDFLIGHTS [14]. This slot can be used to resolve anaphoric references to flights,
based on the order of their mention in the conversation. GUS then tries to determine which
of the flights is appropriate to fill in the FLIGHTCHOSEN slot [15]. When that has been
determined, it . will ask for the name of the traveller and confirm the flight.

Many of the slots are marked in such a way that they need not be filled for the dialog to be
completed. For example, the arrival specification [131 in each TripLeg frame is never
requested. This slot is provided as a place to put constraints about the arrival of the flight,
if the client volunteers information constraining the desired arrival time. Demons associated
with that slot would then be activated to propose a flight based on the arrival time. In a

16

similar way, the AWAYSTAY slot in the trip specification [7], is never asked for. If the client
specifies something about the time range of the AWAYSTAY, as he did in the dialog of Figure
1, there is a place to store that information in the frame structure and a demon to put it into
the appropriate TripLeg.

CLIENT: I want to go to San Diego on May 28

CMD: [CLIENTDECLARE ... the domain dependent translation
(FRAME ISA TRIP- LEG

(TRA VELLER (PATH DIALOG CLIENT PERSON»

(TO- PLACE (FRAME ISA CITY

(NAME SAN- DIEGO»)
(TRA VEL- DA TE (FRAME ISA DATE

(MONTH MAY)
(DAY 28]

TO-PLACE =SAN-DIEGO in (TRIP TO ?) ... filling in the requested information

TRA VEL- DATE =(MAY 28) in (TRIP TO SAN- DIEGO) ... and the volunteered information

dowhen TO- PLACE is put in (TRIP TO SAN- DIEGO) ... propogating information to other slots

(LINK TRIP- SPECIFICA TION FOREIGN- PORT CITY)

Figure 8. The reasoning from the first input utterance

Figure 9 illustrates how a sentence fragment is processed. GUS asks "What date do you want
to return on?" Generation of the question also generates a context for the expected
interpretation of the next answer. The context is an inverted form of the question; that is, "1
want to return" is a potential prefix to the next response. The preposition "on" may be
optionally inserted in this prefix. The client responds "on Friday in the evening". Since this
is not a sentence, the question context is used in the interpretation and the actual parsed
structure which is interpreted is derived from the sentence "1 want to return on Friday in the
evening."

The time is taken as a departure specification and the date is specified in terms of the day of
the week. The day of the week is filled, into the appropriate place and date, and then the
demon associated with that slot in date is activated. That demon cOlnputes the date relative
to the previous date specified in the conversation. The phrase evening is taken as being
equivalent to "around 7 :30 PM". From this departure specification, GUS proposes the flight
that leaves nearest to that tilne. Information is provided to the client about the leaving time,
not the arrival time, because the client constrained the choice of flight by leaving time.

17

GUS: What date do you want to return on? ... a query generated by GUS

The context of the next answer is:
(I WANT TO RETURN «ON) (*SKIP*») - - ... The expected context of the query response

CLIENT: On Friday in the evening

CMD: [CLIENTDECLARE ... the domain dependent translation, including context
(FRAME ISA TRIP- LEG

(TRAVELLER (PATH DIALOG CLIENT PERSON»
(TRA VEL- DATE (FRAME ISA DATE

(WEEKDA Y FRIDAY»)
(DEPARTURE-SPEC (FRAME ISA TIME-RANGE

(DAY-PART EVENING]

WEEKDA Y = FRIDA Y in {ISA DATE}
dowhen WEEKDAY is put in {ISA DATE} ... triggering a demon to find the I?riday's date

(FINDDA TEFROMDA Y)

DA Y =30 in (MAY 30)

DA Y- PART =EVENING in {ISA TIME- RANGE} ... evening is interpreted as around 7:30 PM

DEPARTURE-SPEC =(AT 7 30 PM) in (TRIP TO PALO-ALTO)

dowhell DEPARTURE- SPEC is put in (TRIP TO PALO- ALTO)
(PROPOSE- FLIGHT- BY- DEPARTURE) ... this demon proposes a flight using a departure spec

GUS: Would you like the flight that leaves at 7:45 PM?

CLIENT: That's fine.

Figure 9. Processing a sentence fragment

This sample dialog illustrates how GUS attempts to control a conversation by fitting it to the
mold laid down in a structure of related frames. It has a place prepared in this structure for
each piece of information that might potentially be used for making travel arrangements. It
also has a strategy that will cause the pieces of information that the client must supply to be
elicited in a natural order. The sequence of slots in the frames determines the usual course
of the conversation, but it will change if, for example, the client volunteers information or
asks questions.

18

REAL ·AND REALISTIC DIALOGS

There is an important difference between real and realistic conversations. The simple
dialog in Figure 1 is a realistic conversation that was actually carried on with GUS. It is
much too easy to extrapolat~ from that conversation a mistaken notion that GUS contained
solutions to far more problems than it did. To get an idea of some problems that GUS does
not approach, we collected a variety of travel dialogs that clients of a full- fledged system
(perhaps the final version of GUs) might expect to conduct. We did this by simulating the
system, asking the clients to arrange for round trip air flights between Palo Alto and San
Diego, typing all queries and responses on the computer terminal, and pretending that a
computer system was interacting with them. In fact, the role of GUS was played by an
experimenter sitting at another computer terminal, airline guide, travel books, and calendar
in hand, responding to the client.2

2 The experimental dialogs were collected by Allen Munro in the LNR research laboratory at the University of

California. San Diego.

GUS

CLIENT

GUS

GUS

CLIENT

GUS

CLIENT

GUS

GUS

CLIENT

Do you want a flight leaving at 4:00 PM
Do you have something a little closer to 7
Do you want the flight at 7 :00 PM

a) Interpreting politeness

Do you want the flight arriving at 8:00 PM
When does it leave?
6:30 PM
How much?
$25.50 round trip

b) Some pronominal reference problems

When would you like to return?
I would like to leave on the following Tuesday, but I have to be back before
my first class at 9 AM.

c) Giving a reason for flight preference

Figure 10. Fragments of real dialogs, with a person simulating the role of GUS

The two participants - - client and experimenter - - were each seated in independent,

19

individual sound- isolated experimental booths. They communicated with a special
experimental program (designed for tutorial instruction) that presented the experimenter's
responses in a block presentation, so it appeared as a realistic approximation of a computer
output, without the slow typing rate that would occur otherwise. The system delays were
approximately what one would expect for the operation of a complex program (10 to 60
seconds response time).

Some of the problems we found were unexpected. For example, people spent a lot of time
telling us about their thought processes and reasons. They made excuses for changing their
minds. They hedged a lot about what they wanted. Figure lOa illustrates a type of
conversational interaction our current system cannot even begin to handle. When the system
proposes a flight at 4 PM, the client requests something a little closer to 7. A literal
interpretation of that request would be to find a flight that is as close to 4 PM as possible,
but in the direction of 7 PM: perhaps the 5 :00 PM flight. That, of course, is not at all what
was desired by the client. The human experimenter made the natural response of offering
the flight that left at 7.

Figure lOb indicates some pronominal reference problems which we did not attack at all.
When the client says "when does it leave" it is quite obvious that he wants the departure time
of the flight referred to in the previous sentence. For his question "how much," a response
that "all of the plane leaves" seems somewhat inappropriate. In this case, the client is not
referring to the previous system response, but rather is asking about the cost of the flight.
But a response such as "how much" can sometimes refer to the previous system response.
Suppose the system had just stated "They serve food on that flight." In this case, the client's
query could be appropriately interpreted by the system as referring to the quantity of food.
GUS cannot solve the problem of determining when a response is meant to refer to the
previous question and when it is not.

Figure IOc illustrates how people provide extra information about their motivations. In a
system with a better model of human needs and desires, this would be useful for suggesting
alternatives that might otherwise be ruled out.

CONCLUSION

Computer programs in general, and programs intended to model human performance in
particular, suffer from an almost intolerable delicacy. If their users depart from the
behavior expected of them in the minutest detail, or if apparently insignificant adjustments
are made in their structure, their performance does not usually change commensurately.
Instead, they turn to simulating gross aphasia or death. The hope, which has been at least
partially realized in GUS, is that the notions of procedural attachment and scheduling, as well
as being realistic cognitive models, will make for more robust systems. We were pleased, for
example, by the way the system's expectations could evolve in the course of a single
conversation. The client would occasionally seize the initiative, volunteering information
that was not asked for or refusing to answer a question as asked and GUS was able to respond
appropriately in many cases. It would be misleading to press these claims too far. GUS never
reached the stage where it could be turned loose on a completely naive client, however

20

cooperative. But, to one familiar with other systems of the same general kind, the
impression of increased robustness is clear.

GUS represents a beginning step towards the construction of an intelligent language
understanding system. GUS itself is not very intelligent, but it does illustrate what we believe
to be essential components of such a system. An intelligent language understander must have
a high quality parser, a reasoning component, and a well structured data base of knowledge.
The knowledge is of several types, from language specific information and expertise in the
topic areas in which it can converse to broad general knowledge of the world that must be
used to interpret people's utterances. This knowledge tends to be taken for granted by most
native speakers of the language, hence often left for the listener to infer. The system must
be capable of giving direction to the conversation, but it must also be flexible enough to
respond to novel directions set by the clients. The system must be able to make use of a
large external data base and to understand what information must be retrieved and processed
in depth. There must be an intimate connection between its representation of structural
knowledge and the procedures used to process knowledge. A general framework for
representing knowledge must be able to enCOlnpass all the different necessary forms of
knowledge. In our future studies of GUS, we intend to broaden the general framework for
representing knowledge, as well as to increase the power of the components of the system.
Preliminary steps in this direction include the development of improved systems for
language analysis (Kay & Kaplan, 1976) and a knowledge representation language (KRL:
Bobrow & Winograd, 1976).

21

References

Bobrow, D. G. & Collins, A. M. (Eds.) Representation and Understanding: Studies in
Cognitive Science. New York: Academic Press, 1975.

Bobrow, D. G. & Wegbreit, B., A model and stack implementation of multiple environments,
Communica tions of the ACM, 1973, 16, 591- 603

Bobrow, D. G. & Winograd, T. An overview of KRL, a Knowledge Representation Language.
Cogniti ve Science. Vol 1. No 1. 1977

Bruce, B., Case systems for natural language. Artificial Intelligence, 1975, 6, 327-360.

Carbonell, J. R. AI in CAl: An artificial intelligence approach to computer- aided
instruction. IEEE Transactions on Man- Machine Systems, 1970, MMS-II, 190- 202.

Carbonell, J. R. Mixed- initiative man- computer instructional dialogues. Unpublished Ph.D.
dissertation. Cambridge, Mass: Massachusetts Institute of technology, 1970.

Dahl, O. J., & Nygaard, K., SIMULA- - an ALGOL- Based Simulation Language,
Communications of the ACM, 1966, 9, 671- 678.

Fillmore, C. The case for case. In E. Bach and R. T. Harms (Eds.), Universals in Linguistic
Theory. New York: Holt, 1968.

Goldberg, A. & Kay, A. (Eds.) SMALLTALK-72 instruction manual. Xerox Palo Alto Research
Center SSL-76- 6. Palo Alto, Ca. 1976

Gordon D., & Lakoff, G., Conversational postulates, Papers from Seventh Regional
Meeting, Chicago Linguistic Society, Chicago: University of Chicago Linguistics Department,
1972.

Grice, H. P. Logic and conversation. In P. Cole & J. L. Morgan (Eds.), Studies in Syntax,
Volulne III. New York: Seminar Press, 1975.

Kaplan, R. A general syntactic processor. In R. Rustin (Ed.), Natural language processing.
New York: Algorithmics Press, 1973a.

Kaplan, R. A multi-processing approach to natural language. Proceedings of the 1973
National Computer Conference. Montvale, N.J: AFIPS Press, 1973b.

Kaplan, R. On process models for sentence analysis. In Norman, D. A., Rumelhart, D. E.,
and the LNR Research Group. Explorations in cognition, San Francisco: Freeman, 1975.

22

Kay, M. The MIND system. In R. Rustin (Ed.) Natural language processing. New York:
Algorithmics Press, 1973.

Kay, M. & Kaplan, R. Word recognition. Palo Alto, California: Xerox Palo Alto Research
Center, 1976.

Minsky, M. A framework for representing knowledge. In P. Winston (Ed.), The psychology
of computer vision. New York: McGraw- Hill, 1975.

Reddy, D. R., Erman, L. D., Fennell, R. D., & Neely, R. B. HEARSAY speech understanding
system: An example of the recognition process. Proceedings of the Third International
Joint Conference on Artificial Intelligence, Stanford University, August 1973.

Norman, D. A., Rumelhart, D. E. and the LNR Research Group, Explorations in cognition.
San Francisco: Freeman, 1975.

Rovner, P., Nash- Webber, B., & Woods, W. A. Control concepts in a speech understanding
system. Proceedings of the IEEE Symposium on Speech Recognition, Carnegie- Mellon
University, April 1974.

Simon, H. Sciences of the artificial. Cambridge: Massachusetts Institute of Technology
Press, 1969.

Teitelman, W. INTERLISP reference manual. Palo Alto, California: Xerox Palo Alto
Research Center, December, 1975.

Walker, D., Paxton W., Robinson, J., Hendrix, G., Deutsch, B., Robinson, A. Speech
understanding research. Annual report, Project 3804. Artificial Intelligence Center. Stanford
Research Institute, 1975.

Winograd, T. Frames and the dec1arative- procedural controversy, In D. G. Bobrow and A. M.
Collins (Eds.), Representation and Understanding. New York: Acad~mic Press, 1975.

Woods, W. A. Motivation and overview of BBN SPEECHLIS: An experimental prototype for
speech understanding research. Proceeding of the IEEE Symposium on Speech Recognition,
Carnegie- Mellon University, April 1974.

23

	19771231_01
	19771231_02
	19771231_03
	19771231_04
	19780128_01
	19780128_02
	19780128_03
	19780128_04
	19780128_05
	19780128_06
	19780128_07
	19780128_08
	19780128_09
	19780128_10
	19780128_11
	19780128_12
	19780128_13
	19780128_14
	19780128_15
	19780128_16
	19780128_17
	19780128_18
	19780128_19
	19780128_20
	19780128_21
	19780128_22
	19780128_23
	19780128_24
	19780128_25
	19780128_26
	19780128_27
	19780128_28
	19780128_29
	19780128_30
	19780128_31
	19780128_32
	19780131_01
	19780131_02
	19780131_03
	19780131_04
	19780131_05
	19780131_06
	19780131_07
	19780131_08
	19780131_09
	19780131_10
	19780131_11
	19780131_12
	19780131_13
	19780131_14
	19780131_15
	19780131_16
	19780131_17
	19780131_18
	19780131_19
	19780131_20
	19780131_21
	19780131_22
	19780131_23
	19780131_24
	19780131_25
	19780131_26
	19780131_27
	19780131_28
	19780131_29
	19780131_30
	19780131_31
	19780331_01
	19780331_02
	19780331_03
	19780331_04
	19780331_05
	19780331_06
	19780331_07
	19780331_08
	19780331_09
	19780331_10
	19780331_11
	19780331_12
	19780331_13
	19780430_01
	19780430_02
	19780430_03
	19780430_04
	19780430_05
	19780430_06
	19780430_07
	19780430_08
	19780430_09
	19780430_10
	19780430_11
	19780430_12
	19780430_13
	19780430_14
	19780430_15
	19780430_16
	19780430_17
	19780430_18
	19780430_19
	19780430_20
	19780430_21
	19780430_22
	19780430_23
	19780430_24
	19780430_25
	19780430_26
	19780430_27
	19780430_28
	19780430_29
	19780430_30
	19780430_31
	19780430_32
	19780430_33
	19780430_34
	19780430_35
	19780430_36
	19780430_37
	19780531_01
	19780531_02
	19780531_03
	19780531_04
	19780531_05
	19780531_06
	19780531_07
	19780531_08
	19780531_09
	19780531_10
	19780531_11
	19780531_12
	19780531_13
	19780531_14
	19780531_15
	19780531_16
	19780531_17
	19780531_18
	19780531_19
	19780531_20
	19780531_21
	19780531_22
	19780531_23
	19780531_24
	19780531_25
	19780531_26
	19780531_27
	19780531_28
	19780531_29
	19780630_01
	19780630_02
	19780630_03
	19780630_04
	19780630_05
	19780630_06
	19780630_07
	19780630_08
	19780630_09
	19780630_10
	19780630_11
	19780630_12
	19780630_13
	19780630_14
	19780630_15
	19780630_16
	19780630_17
	19780630_18
	19780630_19
	19780630_20
	19780630_21
	19780630_22
	19780630_23
	19780630_24
	19780630_25
	19780630_26
	19780630_27
	19780630_28
	19780630_29
	19780731_01
	19780731_02
	19780731_03
	19780731_04
	19780731_05
	19780731_06
	19780731_07
	19780731_08
	19780731_09
	19780731_10
	19780731_11
	19780731_12
	19780731_13
	19780731_14
	19780731_15
	19780731_16
	19780731_17
	19780731_18
	19780731_19
	19780731_20
	19780731_21
	19780731_22
	19780731_23
	19780731_24
	19780731_25
	19780731_26
	19780731_27
	19780831_01
	19780831_02
	19780831_03
	19780831_04
	19780831_05
	19780831_06
	19780831_07
	19780831_08
	19780831_09
	19780831_10
	19780831_11
	19780831_12
	19780831_13
	19780831_14
	19780831_15
	19780831_16
	19780831_17
	19780831_18
	19780831_19
	19780831_20
	19780831_21
	19780831_22
	19780831_23
	19780831_24
	19780831_25
	19780831_26
	19780831_27
	19780831_28
	19780831_29
	19780831_30
	19781015_01
	19781015_02
	19781015_03
	19781015_04
	19781015_05
	19781015_06
	19781015_07
	19781015_08
	19781015_09
	19781015_10
	19781015_11
	19781015_12
	19781015_13
	19781015_14
	19781015_15
	19781015_16
	19781015_17
	19781015_18
	19781015_19
	19781015_20
	19781015_21
	19781015_22
	19781015_23
	19781015_24
	19781015_25
	19781015_26
	19781015_27
	19790606_01
	19790606_02
	19790606_03
	19790725_01
	19790725_02
	19790725_03
	19790725_04
	19790725_05
	19790725_06
	19790725_07
	19790725_08
	19790725_09
	19790725_10
	19790725_11
	19790725_12
	19790725_13
	19790725_14
	19790725_15
	19790725_16
	19790725_17
	19790725_18
	19790725_19
	19790725_20
	19790725_21
	19790725_22
	19790725_23
	19790725_24
	19790725_25
	19790725_26
	19790725_27
	19790725_28
	19790725_29
	19790725_30
	19790725_31
	19790725_32
	19790725_33
	19790725_34
	19790725_35
	19790725_36
	19790725_37
	19790725_38
	19790725_39
	19790725_40
	19790725_41
	19790725_42
	19790725_43
	19790725_44
	19790725_45
	19790725_46
	19790725_47
	19790725_48
	19790725_49
	19790725_50
	19790725_51
	19790725_52
	19790725_53
	19790725_54
	19790725_55
	19790725_56
	19790725_57
	19790830_01
	19790830_02
	19790830_03
	19790830_04
	19790830_05
	19790830_06
	19790830_07
	19790830_08
	19790830_09
	19790830_10
	19790830_11
	19790830_12
	19790830_13
	19790830_14
	19790830_15
	19790830_16
	19790830_17
	19790830_18
	19790830_19
	19790830_20
	19790830_21
	19790830_22
	19790830_23
	19790830_24
	19790830_25
	19790830_26
	19790830_27
	19790830_28
	19790830_29
	19790830_30
	19790830_31
	19790830_32
	19790830_33
	19790830_34
	19790830_35
	19790830_36
	19790830_37
	19790830_38
	19791001_01
	19791001_02
	19791001_03
	19791001_04
	19791001_05
	19791001_06
	19791001_07
	19791116_01
	19791116_02
	19791116_03
	19791116_04
	19791116_05
	19791116_06
	19791116_07
	19791116_08
	19791116_09
	19791116_10
	19791116_11
	19791116_12
	19791116_13
	19791116_14
	19791116_15
	19791116_16
	19791116_17
	19791116_18
	19791116_19
	19791116_20
	19800130_01
	19800130_02
	19800130_03
	19800130_04
	19800130_05

