
An Apple to Byte 

Carl Helmers, Editor'-.. It has been a little over a year since 
first became aware of the prototype of 

the Apple II computer on a visit to Palo 
Alto CA in November of 1976. At the time 
I first viewed the Apple II prototype, it 
was littl e more than a wire wrapped proof 
of concept in a homebrew masonite box. 
In the year since my first exposure to the 
machine Apple II has become what I con
sider to be one of the best examples of the 
concept of the complete "appliance" com
puter. This variety of computer is sold as 
a finished product off the shelves of the 
retailer's shop or by mail from the manu
facturer's warehouse. In late October of 
1977, I took delivery on an Apple II with 
16 K bytes of programmable user memory. 
After removing it from its shipping box, 
I connected it to a color television with 
the cables and radio frequency modulator 
supplied, and also connected it to an inex
pensive tape recorder with an "index" 
counter to keep track of position. I was 
able to turn on power and begin using the 
computer within five minutes of receipt. 
After one session in my basement labora-

Photo 7: A concoction of color resembling a 
byrd. This color doodle was produced using 
a homebrew joystick plugged into the Apple 
I/'s game 10 connector, and a BASIC 
program to implement interactive drawing 
on the television screen. The photograph was 
made using 7/7 5th second exposure and 
ASA 200 Kodachrome slide film in a 35mm 
camera with inacro lens mounted on a 
tripod. All the color photographs in this 
article were taken using this setup. 

tory wIring up some joystick hardware 
using Apple II's documentation as a guide, 
and after about three evenings of hacking 
with the built-in ROM BASIC interpreter, 
I was able to produce a program for a color 
sketchpad to provide an illustration of 
some of the potentials of such small com
puters for use in artistic contexts. While 
I treat the Apple II as one of the neatest 
"proofs of concept" of the idea of the 
personal computer yet to become avai l
able, it is by no means the only one on the 
market, so readers should judge for them
selves with respect to their own values and 
preferences. 

The potential for producing graphics like 
photo 1 illustrates why I became intoxi
cated with the Apple II concept from the 
first word of its existence. With a personal 
interest in the uses of computers for artistic 

One User's Review of the Apple II 

18 BYTE March 1978 



Photo 2: The Apple II in a typical use setting. The television is fairly far away 
from the computer itself in order to minimize interference and hash 
generated by the logic circuitry. An inexpensive cassette recorder with 
turns counter is used to provide mass storage for programs. 

20 BYTE March 1978 

purposes, I knew that in principle I should 
be able to create something like photo 1. 
Later in this account, I will present the 
detail design of software which will enable 
the Apple II user to doodle as I did. I 
make no claims to great artistic genius, but 
the ability to do this sort of doodling, as 
well as much more serious computing in a 
utilitarian mode of operation, is what the 
personal computer is all about. Apple II 
is a self-contained package which talks to 
a color television set owned by its user, 
an audio cassette recorder supplied by the 
user, two control paddles supplied by the 
manufacturer, and a "kluge harp" style 
audible annunciator which can be pro
grammed to play music or make a variety 
of noises. Much of the detail of the system 
design of the Apple II has already been 
presented in these pages in the form of an 
article by its designer, Stephen Wozniak, 
which appeared in the May 1977 BYTE 
on page 34. This article will survey the 
reactions I have had to using this system 
in the four weeks or so following its 
arrival. 

Externals 

The physical appearance of the Apple II 
in its normal usage context is illustrated in 
photo 2. The package in which the system is 
contained is a high strength injection molded 
plastic material with a metal bottom plate. 
The plastic parts are painted an off-white 
ivory color. The three piece case consists 

of a body with a door on the top for access 
to the internal works and peripheral sockets. 
The case is almost empty when the Apple II 
arrives, and when carrying the computer 
around in its optional leatherette bag my 
common practice has been to take the cover 
off and insert various paraphernal ia cush ioned 
by foam plastiC to aVOid damaging the circuit 
boards. (If I had any peripherals plugged into 
the 10 bus of the machine, this would not 
necessarily be a good idea.) When zipped up 
in its carrying bag, the Apple II looks like 
an overgrown pocket calculator. I have taken 
this computer in its case to friends' homes 
and with me on trips by airplane (where it 
fits under the seat as "carryon" luggage). If 
the destination of one's travels has a color 
television, and a miniature cassette recorder 
is packed with the Apple II, then this com
puter can be considered to be truly portable 
and adds but one bag to the normal comple
ment of travel luggage. 

While the case is elegantly styled, as can 
be seen from photo 2, there are two minor 
problems related to the mechanical design 
of this case. The problems relate to the top 
of the case and how it fits into the main 
body of the computer. One problem is the 
fact that the adhesion between the paint of 
the case and the plastic is not strong enough 
to keep the fasteners in place. After I 
opened the top a few times both fasteners 
broke loose. The second mechanical design 
glitch is the fact that if the cover is moved 
more than about 5 or 10° from horizontal 
before it is slid out from under the front 
edge of the case, a leverage effect wil.! tend 
to extract the keyboard from its moorings. 

A usable configuration of the Apple II as 
emphasized in photo 2 is made up of the 
computer, a color television, and a cassette 
recorder. The standard game paddles which 
come with the system allow interactive 
graphic applications. The use of a color 
television is highly recommended, although 
a black and white set will certainly work, at 
the expense of one of the unique features 
of Apple II, its color display. 

There are two methods of sending video 
data to the television set from the Apple. 
The best option, which is often used by 
computer stores to show off the system, is 
use of direct video. However, stock color 
televisions or color monitors with direct 
video entry are rare and expensive. A less 
satisfactory but quite workable method 
is the use of a radio frequency modulator 
to generate a television "station" on channel 
3, with connection via the antenna terminals 
and an FCC approved antenna isolation 
switch which mounts on the back of the set. 
This method of driving the television is the 



Photo 3: Removing the cover and looking straight down into the unit, the 
major internal subassemblies can be seen. A t the left is the proprietary 
switching power supply unit; at the right along the bottom of the cabinet is 
the main processor board, with room for 48 K bytes of programmable user 
memory (using 76 K memory parts) and an 8 slot 10 bus used to interconnect 
peripherals. A t the right toward the rear of the cabinet (top of photo) is the 
RF modulator used to drive the television on channel 3. The keyboard can be 
seen toward the lower edge of the photo. 

22 BYTE March 1978 

one used in all the photographs and listings 
accompanying this article. 

The main problem with direct RF entry 
as a method is the tendency of the television 
set's tuner to pick up RF hash from the digi
tal logic of the computer, a problem which 
was quite severe in my experience, using a 
Panasonic color television. The degree of 
interference is dependent upon the exact 
positioning of the cable, the television and 
the computer relative to its various power 
and peripheral cables. The problem can be 
minimized, as shown by the fact that in the 
listings and photos of this article I was able 

to get a clear picture; but I do not recom
mend use of a Panasonic television like 
mine with the Apple II. (Steve Jobs of Apple 
Computer suggests use of several models of 
Sony television sets due to superior RF 
shielding relative to the Panasonic set I used.) 
If you purchase an Apple 1/ and a color 
television for it, I highly recommend testing 
the TV and computer combination prior to 
settling on a particular television . Some com
puter stores will convert TV sets to direct 
video entry, so this provides another option. 

Internals 

Photo 3 shows the Apple 1/ 's interior 
with the cover removed from the case. The 
computer is entirely contained on one large 
printed circuit board on the bottom of the 
case. At the left is a large metal box contain
ing the switching regulated power supply. 
The printed circuit board of the keyboard 
assembly can be seen protruding past the lip 
at the front edge of the case (bottom of the 
photograph). Also seen in this picture is a 
homemade cable running from the game 10 
connector of the processor board to the 
joystick box which I built for use with the 
color sketchpad program to be described. 
At the top right in this photograph can be 
seen the RF modulator unit which plugs 
directly into the main board of the compu
ter. Note that the RF cables contain large 
toroidal ferrite coil forms with several 
turns of the cables around them_ These are 
used to minimize (but in my experience 
with the Panasonic television never totally 
eliminate) RF hash interference in the tele
vision set when the RF modulator technique 
of video data entry is used. 

The Apple II provides a decoded set of 
eight 10 sockets which also feature all the 
processor bus signals. At the time the Apple 
1/ was delivered to me no peripherals were 
available which used this bus, but I have 
since seen several advertisements for prod
ucts to plug into the Apple II bus and the 
Apple Computer Company is working on 
peripherals to extend the power of the 
machine. This bus is completely docu
mented and should work out well for the 
advanced experimenter. 

The Apple hardware includes two fairly 
gamey peripherals for use in family enter
tainment situations_ One such peripheral 
is a pair of game 10 paddles consisting 
of an analog input lever and pushbutton 
switch for each channel. A second such 
peripheral is the annunciator output which 
in addition to sounding the "bell" charac
ter of ASCII can be programmed by the 
user with arbitrary pitches, as a sort of 
music synthesizer. 



Table 7,' Summary of 
the Apple /I 5 K BASIC 
interpreter. 

The Processor 

As documented by its designer Stephen 
Wozniak in the May 1977 BYTE, the design 
of the Apple II system uses the 6502 pro
cessor created by MOS Technology and now 
available from several sources. The design 
has a certain elegance which comes from a 
simple combination of the video display 
generation, dynamic memory refresh and 
processor clock timing based on a single 

Variables: Names may be from 1 to 100 characters in length. Data type is numeric unless 
name is followed by the character "$". 

Numeric Variables: May be arrayed up to the limits of available memory with DIM state
ment. Precision is 16 bits, signed two's complement representation with range - 32768 
to +32767. 

String Variables: 0 I M statement sets length other than default, from 1 to 255 characters 
per string. 

Speed: Executes the loop 100 FOR 1=1 TO 10000,110 NEXT I in about 14 seconds. 

Statements: 

CALL 
DIM 
DSP 
END 
FOR ... = ... TO ... STEP ... 
GOSUB 
GOTO 
IF ... THEN ... 
INPUT 
IN# 
LET .. . = (LET optional) 
LIST 

Graphic Statements: 

COLOR= 
GR 

Operators: 

+ 

NOT 
t (exponentiate) 
* 
I 
MOD 

Functions: 

ABS 
ASC 
LEN 
POL 

Oth er featu res: 

NEXT 
NO DSP 
NO TRACE 
POKE 
POP 
PRINT 
PR # 
REM 
RETURN 
TAB 
TEXT 
TRACE 
VTAB 

HLiN 
PLOT 
VLIN 

#or < > 
< 
> 
<= 
>= 
AND 
OR 

PEEK 
RND 
SCRN 
SGN 

Branch addresses in GOSUB and GOTO and CALL can be any arbitrary numeric 
expression which results in a positive value. Legal line numbers are the positive 
integers 1 to 32767. 

Documentation includes several PEEK and POKE strategies to access hardware such 
as speaker, paddle pushbutton switch inputs, etc. 

Other Features: I nterpreter Control 

AUTO 
CLR 
CON (or control C) 
DEL 
DSP 
HIMEM 
GOTO 
GR 
LIST 

24 BYTE March 1978 

LOAD 
LOMEM 
MAN 
NEW 
NO DSP 
NO TRACE 
RUN 
SAVE 
TEXT 
TRACE 

crystal oscillator. I'll not repeat the detai ls 
here, but simply summarize: the two phase 
nature of the 6502 clock is such that the 
processor turns itself off with respect to the 
outside world during one phase, and accesses 
memory during the other phase. By using 
the phase unused by the processor for access 
of memory by the video display generation 
logic, there is never any conflict between 
the display and the processor's access of 
memory. As a side effect, since the display 
generator is always cycling through the 
low order address bits of the dynamic 
memory content of the machine, the dy
namic memory refresh requirements are met 
by this regular access of memory for display 
purposes. 

The memory address space of the Apple 
II is partitioned into three major segments. 
The region from addresses hexadecimal 0 
to BFFF (48 K bytes) is reserved for pro
grammable user memory, implemented with 
dynamic memory parts. The region from 
0000 hexadecimal to FFFF hexadecimal 
is reserved for systems software in read only 
memory, and 10 ports are found in the 
COOO to CFFF region. 

The user memory region can have any 
combination of th ree 4 K or 16 K byte 
regions depending upon wh ich memory 
chips one plugs into three sets of eight 
sockets. Thus the Apple II. can be had with 
4 K, 8 K, 12 K, 16 K, 20 K, 24 K, 32 K, 
36 K or 48 K bytes of memory at the 
user's option. For full use of the capa
bilities of the machine I would not rec
ommend purchasing less than 16 K bytes 
of memory. 

The read only memory regions cover 
a total of 12 K bytes in the address space, 
starting at 0000 and extending through 
FFFF. In the versions of Apple II currently 
being del ivered, fou r 2 K byte read only 
memory parts are plugged into addresses 
EOOO through FFFF, giving a total of 8 K 
bytes of systems software and leaving two 
2 K byte sockets unused. The present 
ROM load includes 5 K for the integer 
BASIC interpreter, 1 K for miscellaneous 
utility routines, and 2 K for the system 
monitor program. 

Systems Software 

As with all the self contained "complete" 
computer systems, Apple II is ready and 
willing to act as a personal computer ser
vant as soon as the power is turned on and 
the "reset" button on the keyboard is 
pushed. This capability for instant use is 
achieved by the systems software contained 

Continued on page 30 



Continued from page 24 

in the 8 K byte read only memory. On 
reset, the system monitor program is en
tered, with an asterisk (*) retu I·n ed to the 
video display as a prompting character. 
The functions available from this program 
include hexadecim al manipulations of mem
ory contents: displaying memory, changing 
memory contents, moving blocks from place 
to place in memory, comparing blocks in 
memory, reading or writing memory blocks 
to tape. At a slightly higher level, there is 
a "mini-assembler" which does operation 
code lookup and branch address calcula
tion, and a disassembler which inverts the 
operation of the assembler. Th e monitor 
also includes provisions for machine lan
guage tracing of programs, single step 
execution of machine language programs, 
and hexadecimal arithmetic of addition 
and subtraction. This software provides 
the b<l.s is for effective low level use of the 
6502 processor, and in fact was used by 
Apple II's designer Stephen Wozn iak as 
one of the key software development tools 
in implementation of the 5 K Apple BASIC 
interpreter which makes up the remainder 
of the 8 K software in read only memory. 

The 5 K Apple BASIC interpreter is 
entered from the system monitor through 
use of a "control B" command followed 

Table 2: Summary of Apple 1/ features. 

Processor: 6502 running at 1.023 MHz 

User Memory Capacity: Three banks of eight 4 K or 16 K dynamic memory parts 
4 K, 8 K, 12 K, 16 K, 20 K, 24 K, 32 K, 36 K or 48 K bytes 

Read Only Memory Capacity: 

12 K bytes using 2 K by 8 bit ROM parts, 8 K installed 

Standard Peripherals: 

Two game paddles (one switch, one variable analog input per paddle) 
Programmable annunciator 
ASCI I keyboard 

Audio tape mass storage (approximately 1500 bps) 
NTSC color video generation for primary display 

Optional: 

R F modulator for video coupling to standard television 

Expansion Capabilities: 

Eight 10 connectors with 50 pins: 
Full address bus (16 pins) 
Full data bus (8 pins) 
Timing signals 
DMA signals 
Device select signals 

Software: 

System monitor (2 K bytes, ROM) 
Utility routines (1 K bytes, ROM) 
Integer BASIC interpreter (5 K bytes, ROM) 
Full extended BASIC (Applesoft, loaded from tape, requires 16 K user memory) 
Applications software examples including games, accounting, etc 

30 BYTE March 1978 

by a carriage return. Thi s sequence results 
in the 5 K BASIC interpretel·'s prompt 
of an angle bracket (». Th e 5 K inter
preter built into the Apple II is an integer 
BASIC with 16 bit precision and a signed 
two's complement number representation. 
Table 1 summarizes the characteristics of 
this BASIC. Built into the language are a 
number of extensions which are used to 
control special hardware and the graph ics 
of the Apple 11 color display. These exten
sions include the commands GR, TEXT, 
PDL (read a control paddle), SCRN (extract 
the current color of a point on the screen), 
COLOR=, PLOT, VLlN (draw vertical 
line) and HLiN (draw horizontal line). 
Using this 5 K BASIC I was able to imple
ment the color sketchpad progl·am shown 
in the listings of this article, in about t hree 
evenings of experimentation which mostly 
concerned defining just what the program 
must do. 

Th e 5 K BASIC interpreter which is built 
into the Apple is all that is needed for impl e
mentation of most types of interact ive 
games involving color graphics and reaction 
times on the part of the user. But the 5 K 
BASIC, even given its string capabilities, 
is not what one would want to use to do 
a simulation of a physical system or cal
culate quantities other than integers. 

As an answer to the need for an extended 
BASIC as a language for the Apple 11 , 
there is the "Applesoft" extended BAS IC 
interpreter which can be used in systems 
with 16 K bytes of memory or more. The 
name "Applesoft" is a cross between the 
source of the interpreter, the Microsoft 
company, and a gross pun ("applesauce") . 
This interpreter is nearly identical to the 
MiGrosoft extended BASIC interpreters 
which have been made available for a num
ber of personal computer products. The 
people at Apple have hacked the interpl·eter 
to include a few variations on the standard 
version which address the color display 
hardware. The only relative novelty of this 
hack is that in order to get graphics exten
sions, they had to sacrifice two statements: 
LET and REM. Thus, on initiali zation of 
Applesoft, the user is given the option of 
having LET and REM but no built-in 
graphics primitives, or having graphics but 
no LET and REM statements. Since LET 
is totally optional in assignments, its loss 
is hardly felt ; but the lack of remarks may 
be felt by self-documenting code purists 
who want to use the graphics mode of 
Applesoft. Of course not having the primi
tives does not prevent use of the graphics 
hardware, since like all Microsoft inter
preters, Applesoft has PEEK and POKE 



Photo 4: An example of 
the high resolution 
graphics hardware of the 
Apple I I is provided by 
this photo. Although four 
nominal colors are avail
able, this photo illustrates 
how some subtleties of 
color can be obtained by 
taking advantage of the 
distortions inherent in the 
television set when mani
pulating controls. This 
demonstration is one of 
several options available 
in the high resolution 
graphics demonstration 
program of Apple I I. 

32 BYTE March 1978 

primitives and all hardware addresses are 
documented in the Apple II. 

The Applesoft interpreter is loaded from 
its cassette tape using the LOAD command 
of the 5 K interpreter. It takes about one 
minute and 30 seconds to do this load, 
which results in what 5 K BASIC thinks 
is a really big application program, but what 
is in effect the object text of the new inter
preter plus a 5 K BASIC program which 
presents an interactive setup sequence. 
After loading this pseudo 5 K BASIC text, 
the user types RUN, and the interactive 
setup sequence is entered. Th is sequence 
includes the option to display a summary 
of Applesoft BASIC commands which is 
also available on a reference card. After 
the setup sequence, the Applesoft inter
preter is entered, as indicated by a right 
square bracket prompt character (]). With a 
16 K Apple II system, the user gets th e 
message "5615 BYTES FREE" at the 
conclusion of the setup sequence. 

Running the same rather incomplete 
benchmark as is found in table 1, I found 
that the Applesoft interpreter running in 
an Apple II took 12 seconds for 10000 
iterations of a null loop. 

Tape Mass Storage 

The Apple II tape mass storage system 
accomplishes its purposes of storing and 

recovering files of data. I have proven this 
to my own satisfaction by usin g th e sys
tem . For both the 5 K BASIC and Applesoft 
BASIC, SAVE and LOAD operations feature 
a "beep" from the Apple II 's annunciator 
following the leader at the beginning of the 
file, and at the end of the operation. There 
is no such audible feedback when using the 
tape with system monitor commands. 

It is the user's responsibility with the 
Apple II tape system to keep track of files 
on a piece of paper or in a log book. Th e 
software of the tape system does not include 
any naming of files in file headers. It also 
does not include any "verify" command 
for those of us who would like to make sure 
that a file is properly written before pul ling 
the plug and closing down at the end of an 
eveni ng' s programming. 

The act of loading a file involves the user 
positioning the tape just past th e start of 
the leader tone for the file, issuing the 
proper command up to the point of the 
carriage return wh ich completes the com
mand line, then simultaneously starting the 
recorder and hitting the carriage return key. 

High Resolution Graphics Software? 

Th e one item of systems software which 
has been promised but not yet {December 

Continued on page 35 

l 



Continued from page 32 

1977) delivered to me in a documented form 
is the "high resolution" graphics software 
package. This is perhaps the best attribute 
of the Apple II's un ique color graph ics 
orientation; its potential is shown by a 
"high resolution demo " program which 
I was able to get from the company, includ
ing a number of graphic whizbangs selected 
from a list of choices. Perhaps the best 
in my opinion is something called the 
"Spirograph," a constantly changing color 
graphic implementation of a mandala. 
The illustration of photo 4 is taken from 
one state of this program's execu t ion ap
proximately six hours into its evolution 
one evening. The program uses a random 
number generator which appears truly 
random (unrepeatable upon reloading from 
the same tape) to control the course of 
the pattern. The price of the graphics 
routines is listed as $10 . . 

Applications Software 

A mixed bag of user oriented software is 
available with Apple as a means of demon
strating the system. This includes a number 
of tapes with games using the display and 
paddles, a "Checkbook-Home Management" 
package, an excellent 16 K Star Trek game 
which I have used on my system several 
times, etc. Typical prices are around $10 
per tape, with four tapes currently listed 
in the catalog sheet. Users can expect more 
offerings as time goes on. It is these appli
cations programs, games and graph ic whiz
bangs, which provide the greatest value to 
me when demonstrating the concept of a 
personal computer to friends. 

Documentation 

Aside from having a well designed hard
ware configuration, the Apple II is not 
hidden from the user who wants to figure 
out what is in his computer. The "prelimi
nary" documentation which I have on the 
Apple II consists of a loose leaf file bound in 
a report folder which has proved anything 
but preliminary in terms of completeness 
and usefulness. Its contents are not exces
sively verbose, but all the essentials are 
present: the specification of the syntax of 
the 5 K BAS IC, how to access systems 
software hooks from BASIC, the complete 
address space map of the hardware, and neat 
comprehensive drawings of all of the sys
tem 's electronics. When it came time for me 
to wire up a version of the game paddles in 
the form of my own joystick hack, I was 
able to turn to a page of the manual con
taining a specification of all the signals on 
the 16 pin game 10 connector. This manual 

i----------------l 
+5V 

PDLO 

PDLI 

SWO 

SW I 

SW2 

r-------l 
I JOYSTICK ASSEMBLY I 
I I 

6 \----'---r--+----'V'{v' I 
I 
I, VERTICAL (Y) POT 

I 
I 

IO\------+--+-~V'{v' 

I 
I HORIZONTAL (X) POT I 
L _______ J 

R 
2 \------+------.--------'~-_. 

R 
3f-------+--+------<_-----A,'V'v--.... 

R 
4~-----+--+----_-----4~-~ 

L CA BLE 

I 
APPLE 
NO. 18 

TO I 
III 

I ~~~~~DED I 
I I TWISTED 

REMOTE JOYSTICK CONTROL BOX 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

GND 

~ I LI L _______________ ~ 
16 PIN DUAL IN LINE 
PLUG TO JI4 OF APPLE II 

Figure 7: Wiring of the joystick control box and cable. The box is shown in 
photo 5. The cable used was made up of separate #78 stranded wires, twisted 
after all interconnection to the plug had been completed. 

is not a tutorial on how the computer works, 
but it does contain all the information 
needed for the experienced experimenter to 
add custom hardware to the system. A 
"final" version of the manual is in prepara
tion according to the Apple Computer Co, 
but this preliminary manual is complete 
enough to stand on its own. 

The only items where I found documen
tation somewhat scanty were the Applesoft 
BASIC interpreter (documentation limited 
to a reference card quoting the initialization 
texts on how to use it), and the lack of 
documentation of high resolution graphics 
to date. 

Using the Apple II: A Color Sketchpad 
Program and Joystick 

As a means of trying out the Apple II 
system and its documentation, I set a goal of 

Continued on page 40 

BYTE March 1978 35 



Photo 5: The joystick box which was implemented in order to create the 
color sketchpad application of listing 7. The cabinet is a gourmet plastic 
food container obtained at a retail outlet. The box is wired according to 
figure 7, which was created using the Apple /I documentation. 

Continued from page 35 

40 BYTE March 1978 

implementing a version of what was called a 
"Cybernetic Crayon" by Thomas Dwyer, 
Leon Sweer and Margot Critchfield in an 
article we published in November 1976. The 
first requirement was that of creating a joy
stick input to replace the separate control 
paddles which are stand ard from the manu
facturer of Apple II. Then with the joystick 
box tested and working, I would create soft
ware which would use the joystick and the 
Apple II keyboard to create color doodles 
within the 40 by 40 matrix of the television 
screen in the low resolution graphics mode 
of operation. 

The creation of a joystick box with the 
Apple II is a simple matter of wiring. The 
manual lists the complete set of signals avail
able at the game 10 connector, a 16 pin dual 
in line socket located near the rear of the 
main board of the computer. The wiring is 
given in figure 1, showing the essentials of 
two resistance measurements inputs (PDL(O) 
and PDL(l) in 5 K BASIC) and three switch 
inputs. The actual box which I created is 
shown in photo 5. The joystick, which was 
purchased from James Electronics, has four 
100 K potentiometers, of which only two 
are used, one on each axis . The switches 
were push buttons removed from an archaic 
surplus digital test jig (circa 1960 technol
ogy). The entire device was mounted in the 
bottom of a gourmet food container which I 
purchased retail at a shopping mall for this 
purpose. (I actually had to buy a matched 

set of three food containers for about $10, 
of which one was the right size.) The large 
hole for the lever of the joystick was drilled 
first, after which holes for the four #4-40 
mounting screws were carefully located and 
drilled. (Use of a transparent container 
helped immensely here.) Wiring according to 
figure 1 was done point to point after 
mounting the push button switches. 

Making a Program ... 

The wiring of the actual control box was 
derived directly from the documentation 
which came with the Apple II (although it 
required some knowledge of the way a 555 
style timer is used to measure a resistance by 
controlling the width of a pulse (see May 
1977 BYTE, page 42, figure 2)). In a similar 
way, the hook for use of the resistance 
measurements as controls of a program is 
built into the 5 K integer BASIC which is 
part ofthe Apple II. This hook is the built in 
function PDL(x) where x is an integer from 
o to 3 corresponding to the four possible 
paddles wh ich may be used . I n the case of 
the paddle box of figure 1, only PDL(O) and 
PDL(l) will give any externally variable 
value when referenced. It is one thing to 
read the cursor value for a display from 
these inputs, but it is quite another to use it, 
as I found. 

My first attempt was to use the integer 
value from 0 to 255 returned by PDL(n) as a 
direct cursor control for the position of an 
action being performed on the screen. The 
only problem here was that when I normal
ized the values to a range of 0 to 39 appro
priate for the 40 by 40 matrix of points of 
the Apple II, the characteristics of my 
potentiometers prevented fine control of 
which point on the screen was addressed 
(certain points proved totally unadddres
sable). My second attempt was to use a 
tabular transfer function to convert observed 
value to a 0 to 39 coordinate value. After 
this did not work well, as a final expedient I 
then reduced the joystick inputs to the logi
cal equivalent of a set of four single pole 
single throw switches which would input an 
effective "velocity" value of - 1,0 or +1 for 
each axis of motion of the joystick. Once I 
had an effective way of input for the cursor 
motion commands defined by the joystick, I 
could begin to design a program to allow 
definition of color values, and depositing of 
colors under control of one of the switch 
inputs of the control box. 

The final program, a result of several 
iterations, is given in listing 1, photographi
cally reproduced from the screen of my 
television display. The program begins with 
setting of the "graphics" mode with the GR 



Listing 7: The color sketchpad program, implemented in 5 K Apple BASIC. 
Showing complete lack of form, this program is written by its author without 
REM statements to explain what is going on. See the text of the article for 
detailed comments. 

42 BYTE March 1978 

ri 01" n(l~ 
1 GR ' CL 
11 ~~RNlx~ 0 'HLIM 1.39 AT 

I~ g~~:i~~~OSITae 
16 =2 
17 NK=LNG 
17 ~ NT -WHAT ARE JOYST K-I !~~~~5:g~D ZONE LI"IJ~=-.DZ 

1000 KEY= PHi (-16384) 

1003 G8
SUI il 100 SU 8 

101i ¥F K Y<l THEN GOTO 1088 
1015 POKE -16.1 ' 

II~Y [~ ~I~: ~ i~:~F:~ TH N Illi 1152 F K Y= A (D D) TH 5 
1 53 F K Y= A (D") TH N 5 
1 54 F K Y= A (DJ") TH N 17 
1 70 OTO 1080 
2888 PRINT ' PRINT ' PRINT 
2818 INPUT -FIll SCREEN MITH COLOR=-

~:~i i~C&i~cOR CC>15 THEN 1888 
204 F8b 1:8 TO 39 
205 HL~N 0.39 AT I ' NEXT 1 
2055 S8 L=Ci 2057 G UB 6J8 
2060 G TO I 8 
2500 PRINT' RINT ' PRINT 
2518 lP~.NT DENTER TEXT TAG FOR DRAW IN 
2520 NPUT n 
~~lS! 8¥MBliil8 
2608 PRINT ' PRINT ' PRINT ' PRINT 

T$ 
2618 RETURN 
3881 1~I"K=8LtHK-l I:! F Rt!=~~~~3288 
31i C~~Rae 310! IF COL=8 THEN COLOR~ 
311 PLO Y.X 
312 BLlNK~i 
n~5 ~8T8R~~OL 
3211 PLbT Y.X 322 RETURN 
330 XX= POl (I'YY~ pOl (t) 
331 IF XX< Z HIU 6 ii 332 F YY< Z U 7 
333 F XX) 0 TH U 65 
334 F YY> 0 TH U 75 
335 RITIRN ~10i ~ ~ R9IiIL' PLOT Y.X ' X=X-l 65~ L R= l ' PLOT Y.X ' X=X+l 
651 T 9 
~:8i ~~~~R9 §L' PLOT Y.X,Y=Y-l 
75~ l R= L' PLOT Y.X,Y=Y+l 
751 T 9 
8588 PRINT ' PRJ~T ' PRsl"T ' INPUT 

1i!3 ~fi~~irriroh0lf6' OL 

878i DEP8H, .. PEEl( (-16285) 
871 IF I OSIT<128 THEN 8748 872 DEP t .. -I 
873 GOT 75 I~~I YfP 3~~TcQDEP THEN RETURN 

i~~i j&=~~~OSITae THEN 8808 
78 ~EP=D~POSIT 7: ~TU~ 

3111 D~;o~osn 882 RETURN 
990 IF X< THEN xae 90 F x1I9 THEM X0:39 9 4 F Y< THEN yae 
9 F Y> THEN Y=3 
9 F 0 T THEN 958 ;;11 ~~LRNg~AH<Y.x),iLHK=LNG 'H cOLHR=SCOL , PLOT V.X 
99 RETURN 

statement, after which a loop contained in 
line 110 clears the screen to black color with 
40 HUN function calls to draw horizontal 
lines across the whole screen with the last 
color value (set by the statement COLOR = 
o in line 100). Lines 120 to 190 then initial· 
ize several variables. X and Yare used by the 
program as the current cursor values, ranging 
from 0 to 39, initiall y set approximately to 
the center of the screen. DEPOS IT and 
ODEP are flag values used to coordinate 
whether or not the cursor leaves a trail of 
color. SCOl is used temporarily to store 
color values. lNG is the length of the delay 
loop which controls how fast the cursor 
blinks, and must be an even number so that 
it can be divided by 2. BLINK is the running 
counter for this delay loop. The joystick 
dead zone limits are defined with a request 
to the user, and are the number of states 
between 0 and 255 at either end of the range 
which will be considered equivalent to the 
nonzero velocity values for the cursor. With 
entry of the value 100, the calculation of the 
dead zone gives nonzero velocity if the input 
from the joystick measurement is 0 to 100, 
or 155 to 255 in that direction. With the 
hardware I built for the external control 
box, a dead zone of 100 is a typical useful 
value; nonlinearities in the potentiometers 
make lower values impossible to use, and 
higher values make it very difficult to set the 
joystick to dead center and stop motion of 
the cursor. The variables ZD and DZ contain 
the dead zone limits. 

The main routine of the color sketchpad 
program is found in the region from lines 
1000 to 1070 of the listing. This "executive" 
loop begins with a small loop that scans for 
key input from the Apple II's keyboard . The 
current output of the keyboard is obtained 
by the magical incantation on line 1000. 
Two subroutines are called in this scanning 
loop at lines 1003 and 1005. The keyboard 
scann ing loop waits until a valid key code 
(greater than 127) is returned from the key
board before decoding a keyboard command. 
The subroutine at lines 3000 to 3350 blinks 
the cursor and reads the paddle, moving the 
cursor according to the values XX and YY 
which are input when the BLINK count has 
reached zero. The subroutines which imple· 
ment motion are found at lines 6000, 6500, 
7000, and 7500. 

Returning to the main keyboard scan· 
ning loop, the second subroutine called 
within this loop is found at lines 8700 to 
8820, and is responsible for reading the 
"DEPOSIT" switch, switch #2, and setting 
appropriate flags to perform the action of 
depositing a color. Eventually, at line 1010 
a KEY value of an ASCII character code 



Photo 6: An example of 
another product of the 
color sketchpad program, 
in this case illustrating a 
text tag entered by the 
program's "T" command 
to identify when and who 
did the illustration. The 
comments on the second 
line of the text at the 
bottom refer to an experi
ment with the program's 
joystick dead zone para
meter. 

44 BYTE March 1978 

with a high order bit of "1" is detected 
in the range 128 to 255, and th e inner 
keyboard scanning loop temporarily ends. 
Input of the KEY is acknowledged to the 
keyboard by the magical incantation to the 
hardware of POKE -16368,0 at line 1015 . 
(All this hardware specific information was 
elicited from the documentation which 
came with the system.) After the KEY has 
been acknowledged, its value is checked 
and one of five command routines is chosen 
with a series of I F statements. If none of 
the valid commands is entered, the GOTO 
1000 at line 1070 continues execution of 
the keyboard scanning loop looking for a 
valid command. 

Turning to the implemented keyboard 
commands of this color sketchpad program, 
the "F" command is used to fill the screen 
with an arbitrary color. The details, found 
at lines 2000 to 2060, print a message to the 
user "FILL SCREEN WITH COLOR=" 
after which the user enters a value from 0 
to 15 which is range limited by statements 
at 2020. (Thus if "F" is hit by mistake, 
typing an invalid color value outside the 
range 0 to 15 gets the user back to the 
main loop without erasing the current 

picture.) If a valid color is indicated, the 
screen is filled with that co lor, erasing all 
previous work. 

The "C" command is used to access 
the routine starting at line 8500 which 
prompts the user for a new co lor value 
which will be used for drawing. The prompt
ing message from an INPUT statement is 
"WHAT NEW COLOR?". As in most BASIC 
interpreters, the question mark comes from 
the I N PUT statemen t's operation and the 
actual string found in the program has no 
question mark. The user response to this 
I N PUT statemen t at line 8500 is a value 
limited to the range 0 to 15 by the assign
ment statement at line 8510 using the MOD 
function. 

The "T" command is used to input a 
text tag contained in the string T$. This 
tag is typically output by a reference to the 
subroutine at line 2600 prior to resumption 
of the scanning loop after a command is 
executed. In the examp le of photo 6 the 
text tag was used to identify the date and 
time at which the picture was composed, 
and the "artist" responsib le for it. 

Finally, the "J" command is used to 
reset the joystick dead zone limits in the 



~ AD 

~ AI I ...2 A2 C 

~ A3 
2 
4 

....! A4 
2 ~ A5 I 

-:-!: A6 
0 
2 

~ A7 A 

~ A8 
6 

~ A9 

....!! AD 

~ A I 
I ...2. A2 C 

~ A3 I 
4 ...I. A4 
2 ...E. A5 I 

....!. A6 0 

~ 
2 

A7 A 

J!} A8 
6 

~ A9 

....!! AD 

~ AI 
.2 A2 I 

~ A3 
C 
4 

.2 A4 2 -1 A5 I 

...J A6 
0 
2 

..!§ A A7 6 
~ A8 
~ A9 

A Flop in the Floppy 

READ fL WRITE. 

DATA 12 
OUT 

DATA II 
IN 

IC 3A 
7400 2 

CE ~ ~ 

READ f-.. WR I TE 

DATA 12 
OUT 

( - 1\ 
DATA 11 
IN \ I) IC38 

"~~ 
I GI2S 

READ tl- 7404 

WRITE 
3 

I~ t--- i' . DATA 12 
OUT ,, / DATA 
IN 

-"~ CEP<; 8 

,\C3C 7400 

"-~ 
I 

1\ 

event that the first value entered du ring 
initialization was inappropriate. 

primary display. But such problems are 
minor compared to the achievements of 
this design. 

Summary of the Apple II Apple II is a well executed example 
of the way a personal "appliance" computer 
should be made circa 1977. It is suited 
for the relative beginner who knows BASIC 
but does not know hardware design, as well 
as for the advanced hacker who feels no 
qualms about using the system's docu
mentation to create custom peripherals 
for the system. For the user who wants 
color graphics, the Apple II is the only 
practical choice available in the "appliance" 
computer class.-

As noted at the beginning of this review, 
was very enthusiastic about the prospect 

of this machine from the first word of its 
existence. To be sure, there are minor 
annoyances with this product in its present 
state, like the mechanical problems with 
respect to its case and keyboard mounting, 
and the persistent problems of radio fre
quency interference which I found using 
my particular color television set as the 

Z ! 

ICI2A 

2 I 
7<1l 

I 

Clock 5tops 

I enjoyed M F Smith's article in the 
November 1977 BYTE on "Using 
Interrupts for Real Time Clocks." He 
did a great job in describing how to 
develop and use a real time clock. So I 
implemented his program on my AMI 
PROTO 6800 System, only to find it 
not functioning properly in updating 
the clock . After examing the program 
listing closer, I found the bug at line 
29 of your listing on page 53. The index 
compare was only index by 7 into the 
constant table, it should be index by 
8. After I made this change everything 
worked.-

William W Barncord 
Burroughs Corporation 

24735 Memphis Way 
Aurora CO 80013 

Joystick Gets 5tuck 

This letter is in reference to "An 
Inexpensive Joystick Interface," which 
appeared in the March 1977 BYTE on 
page 88. I'd like to congratulate Tom 
Buschbach on a fine article, but there 
seem to be several mistakes in the 
schematic . 

On the MC1408 L-8, A 1 is the most 
significant bit. The schematic shows this 
connected to the least significant bit of 
the counter. The eight digital inputs to 
the digital to analog converter should be 
reversed in order to obtain a proper 
sawtooth output. 

Also, on IC2, 7419 3, the count up 
input is shown ground ed. This must be 
held high to enable the count down 
input. 

Fractured Factors and 
Walsh Function Bugs 

William Jackson's letter on page 172 
of the October 1977 BYTE contains two 
errors which can be corrected by reo 
placing the fourth equation with : 

=(y+z) + j{x-z) 

and the fifth equation with: 

Where x=(a+b)c. 

Regarding the September 1977 arti
cle "Walsh Functions : A Digital Fourier 
Series": in the third paragraph on page 
196, one reads "Sin (11.25 ° ) = 0.09802." 
The proper value is 0 .19509. The value 
given is that appropriate for 11.25/2° . 
The sums should be, I think , 5.13842, 
-2.13578, --0.40974 and -1.03218 
in table 4. The coefficients would then 
be 1, - 0.4156, -0.0797 and -0.2009. 
Also the signs for SAL(7) at the bottom 
of the table should be PNPNNPNP. 
What was printed is CAL(7). 

If I have not made a mistake, the 
resistors in table 5 would be unchanged, 
but shouldn't there be some differences 
in the circuit diagram? 

J 5 Lefson 
6609 Cote 5t Luc Rd, Apt 203 

Montreal, Quebec 
CANADA H4V 169 

Dr Jacoby replies: 

The drafting bug has bitten BYTE. 

I have constructed this circuit using a 
different register chip (8212) and the 
above ch anges, and it works ve ry 
nicely.-

Mr Lefson is correct that SA L(7) 
in table 4 is misprinted. This can be 
easily seen by comparison to table 3 or 
by knowing that the SA L functions 
themselves are odd about th eir centers 
and even about their 7/4 and 3/4 period 
points, and thus should give identical 
values to the left and right of center in 
table 4. 

The accompanying figure detail (taken 
from figure 1 a of David Allen's article , 
"A Floppy Disk Interface," January 
1978 BYTE, page 61, right-hand side) 
contains a number of drafting errors 
inadvertently included during the pro
duction of the article. The corrections 
are circled. In addition , IC18c, a three 
input AN D gate, was incorrectly drawn 
as a NAND gate, and the A 1 and A2 

William Lemiszki 
424 Cambridge 5t 

Allston MA 02134 

inputs of IC22 should be shown con
nected together. Our thanks to the 
readers who spotted these errors, and 
our apologies to David Allen .-

In addition, the values for Sin 78.75° 
and Sin 707.25° are incorrect and should 
read 0.98078. I believe that th e values 
for the sums are correct as given as well 
as the circuit connections [compare to 
figure 3 for SA L (7) J. One point of con
fusion here might be the signs of the 
coefficients, since they take into account 
the inverting op amp configuration and 
thus appear reversed.-

46 BYTE March 1978 


	Cover
	Index
	In This BYTE
	Editorial
	A Two Computer Music System
	Letters
	An Apple to Byte
	BYTE's Bugs
	The Microcomputer and the Pipe Organ
	The Brains of Men and Machines - Part 3: How the Brain Analyzes Input
	Program Your Next EROM in BASIC
	User's Report: The PET 2001
	The Altair (S-100) Bus Forum: PCC 77
	CIE Net: A Design for a Network of Community Information Exchanges - Part II Protocols 
	Microchess 1.5 versus Dark Horse
	Take a Course in Microprogramming
	The Capital of New Mexico is Santa Fe
	Programming Quickies
	Clubs and Newsletters
	Controlling the Real World
	Interfacing the Sykes OEM Floppy Disk Kit to a Personal Computer
	Get On at the Right Address
	The Intelligent Memory Block
	Whats New?
	Classified Ads



