
Pilot: A Software Engineering Case Study

by Thomas R. Horsley and William C. Lynch

July 10, 1979

ABSTBACT

Pilot is an operating system implemented in the strongly typed language Mesa and produced
in an environment containing a number of sophisticated software engineering and
development tools. We report here on the strengths and deficiencies of these tools and
techniques as observed in the Pilot project. We report on the ways that these tools have
allowed a division of labor among several programming teams, and we examine the problems
introduced within each different kind of development programming activity (ie. source editing,
compiling, binding, integration, and testing).

XEr{OX
SYSTEMS DEVELOPMENT DEPARTMENT
3408 Hillview Ave / Palo Alto / California 94304

2 T. R. HORS[EY A:-';l) W. C. LYt\CH

Introduction

The purpose of this paper is to describe our experiences in implementing an operating system
called Pilot using a software engineering support system based on the strongly typed language
Mesa [Geschke et of, 1977, Mitchell et 01, 1978], a distributed network of personal computers
[Metcalfe et 01, 1976], and a filing and indexing system on that network designed to coordinate the
activities of a score or more of programmers. In this paper we will present a broad overview of
our experience with this project, briefly describing our successes and the next layer of problems
and issues engendered by this approach. Most of these new problems will not be given a
comprehensive discussion in this paper, as they are interesting and challenging enough to deserve
separate treatment.

lbat the Mesa system, coupled with our mode of usage, enabled us to solve the organi7C1tional and
communication ploblems usually associated with a development team of a score of people. These
facilities allowed us to give stable and non-interactive direction to the several sub-teams.

We developed and used a technique of incremental integration which avoids the difficulties and
schedule risk usually associated with system integration and testing. .

lhe use of a Program Secretary, not unlike Harlan Mills' program librarian, proved to be quite
valuable, particularly in dealing with situations where our tools had weaknesses. We showed the
worth of the program librarian tool, which helped coordinate the substantial parallel activity we
sustained; and we identified the need for some additional tools, particularly tools for scheduling
consistent compilations and for controlling incremental integrations.

We determined that these additional tools require an integrated data base wherein consistent and
correct information about the system as a whole can be found.

Background

Pilot is a medium-sized operating system designed and implemented as a usahle tool rdthcr than as
an object lesson in operdting ~ystem design. Its con~truction WC1,) subjected to the fiscal, schedule,
and performance pressufes normally associated with an industrial enterpi isc.

Pilot is implemented in Mesa, a modular programming system. As reported in [Mitchell et 01,
1978], Mesa supports both definitions and implementing modules (sec below). Pilot is compriscd
of some 92 definitions modules and 79 implementation modules, with an average module size of
approximately 300 lines.

Pilot consists of tens of thousands of Mesa source lines; it was implemented and released in a few
months. The team responsible for the development of Pilot necessarily consisted of a score of
people, of which at least a dozen contributed Mesa code to the final result. The coordination of
fOUf separately managed sub-teams was required.

There arc a number of innovative features in Pilot, and it employs some interesting operating
system technology. However, the structure of Pilot is not particularly relevant here and will be
reported in a series of papers to come [Redell et of, 1979], [Lampson et of, 1979].

Pll OT: A SOFt WAf.(I r~:\GI:\ EfIU"G CASE Sl G"DY 3

Development Environment and Tools

The hardware system supporting the development environment is based on the Alto, a personal
interactive computer [Lampson 1979], [Boggs, et aI, 1979J. Each developer has his own personal
machine, leading to a potentially large amount of concurrent development activity and the
potential for a great degree of concurrent development difficulty. These personal computers are
linked together by means of an Ethernet multi-access communication system [Metcalfe et aI, 1976].
As the Altos have limited disk storage, a file server machine with hundreds of megabytes of
storage is also connected to the communications facility. Likewise, high-speed printers are locally
available via the same mechanism. The accessing, indexing, and bookkeeping of the large number
of files in the project is a serious problem (see below). To deal with this, a file indexing facility
(librarian) is also available through the commun ications system.

lne Alto supports a number of significant wideranging software tools (of which the Mesa system is
just one) developed over a period of years by various contributors. As one might imagine, the
level of integration of these tools is less than perfect, which led to a number of difficulties and
deficiencies in the Pilot project. Many of these tools were constructed as separate, almost stand
alone system~.

rLne major software tools which we employed are described below.

Mesa is a modular programming language [Geschke el aI, 1977]. The Mesa system consists of a
compiler for the language, a Mesa binder for connecting the separately compiled mudules, and an
interactive debugger for debugging the Mesa programs. Optionally, a set of procedures called the
Mesa run-time may be used as a base upon which to build experimental systems.

rrne language defines two types of modules: definitions modules and implementatlOll modules.
Both of these are compiled into binary (object) form. A definitions module describes an interface
to a function by providing a bundle of procedure and data declarations which can be referenced
by c!ielll programs (cliellts). Declarations are fully type specified so that the compiler can carry out
strong type checking between clients and implementation modules. The relevant type informatioIl
is supplied to the clients (and checked against the implementations) by reading the object modllle~
which resulted from previous compilation(s) of the reIevent definitions module(s). The
implementing modules contain the procedural description of one or more of the functions defined
in some definitions module. Since an implementing module can be seen only through some
definitions module, a wide variety of implementatiuns and/or versions is pussihle without theil
being functionally detectable by the clients. Thus Mesa enforces a form of information hiding
[Parnas, 1972].

The Mesa binder [M itchell et aI, 1978] defines another language, called C/Mesa, which is capable
of defining configurations. These assemble a set of modules and/or sub-configurations into a new
conglomerate entity which has the characteristics of a single module. Configurations may be
nested and used to describe a tree of modules. Configurations were used in the Pilot project as a
management tool to precisely define the resultant output of a contributing development sub-team.

Another software tool is the Librarian. It is designed specifically to index and track the history of
the thousands of files created during the project. In addition to its indexing, tracking, and status
reporting functions, the Librarian is constructed to adjudicate the frequent conflicts arising between
programmers attempting to access and update the same module.

1'. R. HORS! t'(:\:\D W. C. LY:-"CH

Organization, Division, and Control of the Development Effort

The size of the Pilot development team (itself mandated by schedule considerations) posed the
usual organizational and management challenges. With 20 developers, a multi-level management
structure was necessary despite the concomitant human communication and coordination problems.

As described below, we chose to use the modularization power of the Mesa system to address these
problems, rather than primarily providing the capability for rapid interface change as reported in
[Mitchell, 1978]. The resultant methodology worked well for the larger Pilot team. We believe
that this methodology will extrapolate to organizations at least another factor of five larger and one
management level deeper. A description and evaluation of this methodology are the topics of this
section.

Another aspect of our approach was the use of a single person called the Program Secretary, a
person not unlike the program librarian described by Harlan Mills [Mills, 1970] in his chief
programmer team approach. As we shall describe, the Secretary performed a number of functions
which would have been very difficult to distribute in our environmcnt. This person allowed us to
control and make tolerable a number of problems, described below, which for lack of time or
insight we were not able to solve directly.

The Pilot Configuration Tree

We organized Pilot into a tree of configurations isomorphic to the corresponding people tree of
teams and sub-teams. The nodes uf the Pilot tree are C/Mesa configuration descriptions and the
leaves (at the bottom of the tree) are Mesa implementation modules. By strictly controlling the
scope (sec below) of interfaces (through use of the facilities of the configuration language C/Mesa),
different branches of the tree were developed independently. Th~ configuration tree was three to
four layers deep everywhere. The top level configuration implements Pilot itself. Each node of
the next level down maps to each of the major Pilot development teams, and the next lower level
to sub-teams. At the lowest level, the modules themselves were usually the rcsponsibility of one
person. This technique of dividing thc labor in correspondence with the con figurdtioll trcc p rm cd
to be a viable management technique and was supported effectively by Mesa.

Management Of lllterface5·

It quickly became apparent that the scope of an interface was an important concept. It is
important because it measures the number of development teams that might bc impacted by a
change to that interface. The scope of an interface is defined as the least configuration within
which all clients of that interface are confined. This configuration corrcsponds to the lowest
C/Mesa source module which does not export thc interface to a containing configuration. Thu<,
the scope of a module may be inferred from the C/Mesa sources. The impdct of a change to an
interface is confined to the development organization or team that corresponds to the node which
is the scope of the interface. Thus the scope directly identifies the impacted organization and its
su b-organizations.

The higher the scope of an interface, the more rigorously it must be (and was) controlled and the
less frequently it was altered since changes to high scope intcrfaces impact broader organi7ations.
Changing a high level interface was a management decision requiring careful project planning and
longer lead times, while a lowest-level interface could be modified at the whim of the (usually)
individual developcr responsible for it. In gcneral, changing an interface required project planning
at the organizatiOIldl level corresponding to its scope. In particular, misunderstandings between
development sub-teams about interface spccifications were identified early at design time rather
than being discovered late at system integration time. Also obviated were dependencies of one

P1LOT: A Sm'[W.\RF P"GJ:\FI·.k[\G C'\SF STlDY 5

team on another team's volatile implementation details. The result of all of this was 1) the
elimination of schedule slips during system integration by the elimination of nasty interface
incompatibility surprises and, even stronger, 2) the reduction of system integration to a pro-fom1a
exercise by the (thus enabled) introduction of incremental integration (see below).

[Mitchell 1978] reported good success with changing Mesa interface specifications, followed by
corresponding revisions in the implementing modules and a virtually bug-free re-integration.
While we also found this to be a valid and valuable technique for low-level interfaces (the scope of
which con'esponded to a three-to-five-person development sub-team), the project planning required
to change high-level interfaces affecting the entire body of developers was obviously much greater
as was the requirement for stability of such interfaces. It should be noted that the experience
reported by [Mitchell 1978] refers to a team of less than a half dozen developers.

Thus, we chose to use the precise interface definition capabilities and strong type checking of the
Mesa system differently for the high-level interfaces than for the low-level ones. High-level
interfaces were changed only very reluctantly, and were frozen several weeks prior to system
integration. This methodology scrvcd to decouple one development team from anothcr since each
team was assured that they would not be affected by the on going implementation changes made
by another developer. Each could be dependent only on the sharcd definitions modules, and these
were controlled quite carefully and kept very stable [Lauer el aI, 1976].

The Master List

As the system grew, it became painfully obvious that wc had no single master description of what
constituted the system. Instead we had a number of overlapping descriptions, each of which had
to be mainL:lined independently.

One such description was the working directOfY on the file server. Its subdirectory structure was a
representation of the Pilot trec. Another dcscription of this same tree was cmbodied in the
librarian data base which indexcd the file server. Yet another description was implicit in thc
C/Mesa configuration files. Early in the projcct we found it necessary to create a sct of command
files for compiling and binding the system from source; these files contained still another
description of the Pilot trec.

lhe addition of a module implied manually updating each of these related files and data bases; it
was a tedious and error prone process. In fact, not until the end of the project werc all of these
descriptions madc consistent.

We nevcr did effect a good solution to this problem. We dealt with it in an ad hoc fashion by
establishing a rudimentary data base called the Master List. This data base was fundamental in thc
sense that all other dcscriptions and enumerations were requircd to confoml to it. A program was
written to generate from the Master List some of the above files and some of the required data
base changes.

A proper solution to this problem requircs merging the various lists into a single, coherent data
base. This implics that each tool take direction from such a data base and properly update the
data base. Since many of the tools were constructed apart from such a system, they would all
require modification. Thus the implementation of a coherent and effective data base is a large task
in our environment.

Incidentally, this problem was one of those controllcd by our Program Secretary. It is quite clear
what chaos would have resulted if the updating of the numcrous lists described above had not
been concentrated in the hands of a single developer.

6 T. R. HOP-Sf l-Y :\;-"D W. C. LY:\CH

Pilot Update Cycle

In this section we will examine some of the interesting software engineering aspects of the inner
loop of Pilot development. This inner loop occurs after design is complete and after a skeletal
system is in place. The typical event consists of making a coordinated set of changes or additions
to a small number of modules.

In our environment, a set of modules is fetched from the working directory on the file server to
the disk on the developers personal r<,achine. Measures must be taken to ensure that no one
changes these modules without coo'inating these modifications with the other developers.
Usually edits are made to the source modules; the changed modules (and perhaps some others) are
recompiled; and a trial Pilot system is built by binding the new object modules to older object
modules and configurations. The resulting system is then debugged and tested using the symbolic
Mesa debugger and test programs which have been fetched from the working directory. When the
system is operating again (usually a few days later), the result is integrated with the current
contents of the working directory on the file server, and the changed modules are stored back onto
the working directory.

A number of interesting problems arise during this cyclic process:

lonmlent Update Of Files

Pilut has heen implemented in the contel(t of a distributed computing network. The master copies
of the Mesa source modules and object modules for Pilot are kept in directories on a file server on
the network. In order to make a coordinated batch of changes to a set of Pilot source files, the
developer transfers the current copies of the files from the file server to his local disk, edits,
compiles, integrates, and tests them, and then copies them back to the file server.

This simple process has a number or risks. Two developers could try to change the sanJe file
simultaneously. A developer could forget to fetch the source, and he would then be editing an old
copy on his local disk. He could fetch the correct source but forget to write the updated ver~ion
back to the file server.

All of these risks were addressed (after the project had begun) by the introduction of the program
librarian server. This server indexes the files in the ftle server and adjudicates access to them via a
checkin/checkout mechanism. To guarantee consistency between local and remote copies of files,
it provides atomic operations for "checkout and fetch the file" and "check in and store the file". In
the latter case, it also deletes the file from the local disk, thus rernoving the possibility of changing
it without having it checked out (n.b. check-in is prevented unless the developer has the module
currently checked out).

Consistent Compilation

1":ac11 Mesa object file is identified by its name and the time at which it was created; it contains a
list of the identifications of all the other object modules used in its creation (e.g., the defi nitiollS
module it is implementing). The Mesa compiler will not compile a module in the presence of
definitions modules which are not consistent, nor will the the binder bind a set of inconsistent
object modules. Consistent is loosely defined to mean that, in the set of all object modules
referenced directly or indirectly, there is no case of more than one version of a particular object
module. Each recompilation of a source module generates a new version.

For example, module A may use definitiol\s modules Band C, and definitions module 13 may also
refer to C. It can easily happen that we compile 13 using the original compilation of C, then we

Pu Of: :\ SOfTW.\RF F0.GI:-"TFR I"G CASE Sl CDY 7

edit the source for C "slightly" and recompile, and then we attempt to compile A using C (the
new version) and using B (which utilized the original version of C). The compiler has no way of
knowing whether the "slight" edit has created compatibility problems, so it "plays safe" and
announces a consistency error.

Thus, editing a source module implies that it recompile not only itself, but also aU of those
modules which include either a direct or an indirect reference to it. Correctly determining the list
of modules to be recompiled and an order in which they are to be recompiled is the consistent
compilation problem.

This "problem" is, in fact, not a problem at all but rather an aid enabled by the strong type
checking of Mesa. In previous systems the developer made the decision as to whether an
incompatibility had been introduced by a "slight" change. Subtle errors due to the indirect
implications of the change often manifested themselves only during system integration or system
testing. With Mesa, recompilation is forced via the Mesa systems auditing and judging the
compatability of all such changes, thus eliminating this source of subtle problems.

A consistent compilation order for a system (such as Pilot) having a configuration tree can be
determined largely by the following analysis:

1) As a 'direct consequence of the consistency requirement, two modules cannot reference each
other, nor can any other cyclical dependencies exist; otherwise the set cannot be compiled. This
irnplies the existence of a well-defined order of compilation.

2) Pilot implementation modules may not refer to each other but must refer only to definitions
modules. Therefore only those implementation modules which import recompiled definitions
modules need themselves be recompiled. Such implementation modules are recompiled in any
order after the recompilation of the definitions modules.

3) An individual definitions module can have compilation dependencies only on module~ having
. the same or a higher scope (from the definition of scope). The proper compilation order for

definitions modules with different scopes is thus determined by the C/Mes<I configuration source.:;
(compile the one with the higher scope first). The Pilot tree of configurations thus imposes a
global and fairly restrictive partial ordering on the compilation order of definitions modules. The
set of "difficult" compilation dependencies are hence limited and localized to definitions modules
of the same scope and described in the same C/Mesa source module.

4) By point 1) there exists a well-defined order of compilation among interfaces possessing the
same scope. The compilation order of such sets of interfaces was determined at design time, and,
as a matter of policy, the interfaces were not often modified so as to change this ordering.

As an aside, it is clear that it is possible to build a tool which, given that a specified module ha.:;
been changed, will examine the source modules of the system, determine which modules must be
recompiled, and give the order of their recompilation. This is a Consistent Compilation Too!. A
practical consistent compilation tool need not be omniscient, and it could occasionally cause a
module to be compiled when this was not really necessary. Our attempts to build such a tool have
been less than completely successful.

Consistent compilation and the design of associated tools is one of those topics which requires a
separate paper for a complete treatment.

System Bu ildi fig

8 1'. R. HORSl H A" D W. C. LY"-fCH

As already mentioned, the nodes of the Pilot tree are C/Mesa configuration descriptions.
Associated with each is an object module built by binding all associated modules and
configurations below the node in the Pilot tree. If a module changes, the system is rebound
bottom up through the tree. First, the changed module is bound with its siblings in its parent
configuration. Next, the parent is bound with its siblings in its parent's configuration, and so on.

Since the binding must be done on the developers personal computer and the object modules are
stored in the file server, it is necessary to fetch from the file server the object modules involved in
the binding and to store (after testing [see below]) the newly bound replacements back onto the
file server.

The process of fetching (from the file server) the correct siblings for each level of binding is
somewhat tedious and error prone. It was not automated except by individual developers llsing
command files. Clearly this information should have been derived automatically from the Master
List or from the hypothesized data base.

£:lach rebinding yield.:; a new version of the object module. The Mesa Binder enforces consistent
binding by ensuring that only one version of a module or sub-configuration is used either directly
or indirectly in a bind. This situation has a number of similarities to the consistent compilation
issue. The subtleties of consistent binding also merit treatment in a separate paper.

Integration and Testing

A key software engineering technique which we implemented for the Pilot project was that of
incremental integration. This kept Pilot integrated and tested in a state which was no more than a
few days behind the lead developers.

Each developer integrated and tested change,;, as he made them. Bug'> arose incrementally and
were usually restricted to the last set of changes; there was always a current working version of the
system. This technique was particularly useful in the early stages of development, when the
various teams were quite dependent on what the other teams were doing (i.e., they needed new
functions as soon as they were implemented).

Substantial payoff was reali7ed at the time of release. Final system!' integration and systems test
proved to be almost trivial; essentially no bugs showed up at this stage. (In many projects it is
during this phase that project failure occurs [often with no prior warning]). We were also required
to designate several system integrations as internal releases. This provided a continuing sequence
of milestones by which progress could be measured.

Key to meeting this objective of incremental integration is the requirement to maintain consistency
among the 60urces and objects in the working directory on the file server. In this case consistent
means that the stored modules are consistently compiled and consistently bound and that the
resultant Pilot object module has been system tested using regression-test programs also stored
consistently in this same working directory.

When the Pilot object module had been constructed as described above, the test modules were
fetched from the working directory and executed. Nothing was to be stored in the working
directory until these tests had been passed. We referred to this whole process as incremcntal
integration. (It is intended that the update performed in an incremental integration require only a
small amount of work, [i.e., a few man-days]).

lhe steps in storing a change to Pilot onto the working directory were as follows: 1) test the
change on a private version of Pilot in one's local environment. 2) fetch the latest object modules
from the working directory, rebuild the system, and test again. 3) via the librarian, acquire sole

PlLO r: A SObTWARE E);GI);EERI:-"G CASE STUDY 9

right to update the master copy. 4) again fetch the latest object modules, rebuild the system and
test. 5) write the source and new object modules back onto the working directory. 6) relinquish
sole right to update the master copy of the object modules via the librarian.

Steps 3-6 are, of course, necessary to resolve the "store race" which sometimes results from two
developers performing incremental integrations in parallel. This procedure permits such parallel
incremental integrations provided that they are independent updates and that the order in which
they are performed matters not. Step 2) minimizes the time that the universal directory lock is
held. Note that if independent and parallel incremental integrations are, in fact, taking place, the
modules fetched at step 4) may very well be different than those fetched at step 2). Unless there
is a subtle interaction error between the changes of the two concurrent incremental integrations,
the test at step 4) will not fail.

While this procedure was effective in managing parallel incremental integrations, its
implementation was not very satisfactory. The procedure was executed manually, introducing the
potential for error. The fetching and storing were accomplished by command files derived from
the Master List rather than from an integrated data base. This situation could be considerably
improved by a tool flexing off the appropriate data base. While the overhead of our incremental
integration procedure was considerable, the payoff more than justified it.

It should be pointed out that certain classes of changes could not be made as small increments to
the current version of Pilot. For example, the changing of high-level interfaces usually had system
wide repercussions. These changes were coordinated via internal releases (described below).

Releases

Internal Releases

Internal releases of Pilot were generated when major interface changes were required and also
periodically to serve as milestones for the measurement of progress. Internal releases are also
useful to assure the consistency of the source and object modules in the directory. In our
environment it is possible (through human error) for the source and object modules to be
inconsistent with each other due to the lack of unique version identification (e.g., a timestamp) in
each source module. (Source modulc~ may be updated and checked back in without being
recompiled and rebound.) Ultimately, the only way to guarantee that the sources and objects are
consistent is to recompile the source.

To make an internal release, the working dire:.:tory was write-locked and the system was brought to
a guaranteed consistent state by completely recompiling and rebuilding it from source files. The
working directory was then tested and finally backed-up to an archive directory. Thi,; was all done
by the Program Secretary using command files generated from the Master List. Any outstanding
changes to high level interfaces were made and frozen several weeks prior to the internal release.

External Releases

An external release is accomplished simply by moving a completed internal release from the
working directory to a public test directory. Substantial testing must take place and documentation
must be created. At the completion of the te~ting period, the release should be moved from the
public test directory to the proper public release directory.

10 1'. R. HOh'SI.EY .\:\0 W. C. LY~C!!

1he execution of this activity was another of the Program Secretary's duties.

Forking

Forking is defined to be the creation of a copy of a system followed by the development of that
copy in a fashion inconsistent with the continuing development of the original. This usually means
that there is at least one module in which changes must be made which are incompatible between
the two branch systems of the fork. We forked at one point early in the development, and found
it sufficiently unmanagable that we did not try it again. The extra complexity of maintaining two
development paths and the problems of making parallel bug fixes were the major shortcomings of
forking. The software engineering procedures described in this paper 0 not address the problems
of forking.

File Management

All of these machinations create file and directory logistics problems. In addition to the main
working directory, we also have a public test and a public release directory for the previous
external release. Additionally, each external release and each internal release (four or five per
external release) arc captured on a structured archive directory.

By the end of the project, there were 600 current versions of files stored on just the working
directory. This included almost 200 source files, their corresponding object files and symbols files
(for the symbolic Mesa Debugger), and a number of other files, including about 150 associated
with the test programs. With snapshots of past releases of the system on the archive directory, the
actual number of online files approached 5000. The time spent keeping this data base up to date
and backed up was very significant. The Master List and command files generated therefrom
helped alleviate some of the logistics problems.

Conclusion

What is the upshot of all of this? In short, most of the development environment and control
concepts which we used worked well. Of even more interest is the catalog of newly discovered
issues which are the ones now constraining our performance. Our systems are ne"er fast enough,
particularly in switching from one major task to another. Many task<> which we perform manually
cry out to be automated, to have their speed of execution improved but, more important, to have
their accuracy increased. The automation of these tasks generally requires a much more integrated
data base than is easily constructed in concert with our unintegrated tools.

Successe5

What worked really well? The configuration and interface definition capabilities of the Mesa
language, the C/Mesa configuration language, and the Mesa Binder worked spectacularly well in
allowing us to divide, organi7e and control our development effort. Such facilities are clearly a
must in any modern systems language and implementation.

lhe important notion of the scope of an intcfface and the concept of grading and controlling the
volatility of each interface according to its scope gave the project the appropriate amount of
stability at each organii'ational level. This stability in turn was, one of the enabling factors for
incremental integration.

Pn 0 r: A SOFi·WARt: E;\GI~ EERI","G C\SE S1 LDY II

The Program Secretary was clearly a vital post in this scheme. He was instmmental in maintaining
the structure and consistency of the Master I ist, the directories, and the many command files. He
was also the prime mover in the execution of both internal and external releases. We do have
some vague suspicions, however, that the Program Secretary's main value was in carrying the
integrated data base in his head, as ¥/e had no automated mechanism for doing so. Certainly the
implementation of an effective and integrated data base (of which the Master List would be a part)
would reduce his duties considerably.

The program librarian proved its worth in dealing with the problem pf updating the working
directory consistently. Since this tool was introduced slightly after the beginning of the Pilot
project, its impact was clearly observable. It was an important facility in the implementation of the
incremental integration technique. .

Last, the incremental integration technique itself, despite its largely manual implementation, was
quite successful, particularly from the point of view of avoiding a monolithic system integration
and test just before a scheduled release.

Deficiencies

With respect to our development environment, the relative autonomy of each of our tools reflected
itself in our inability to achieve an integrated data base which would control the tools in a
consi..,tent way. It also manifested itself in the relative slowness of the system in switching frum
one tool to another. Something as elementary as switching from the compiler to the editor
requires a fraction of a minute. This slowness raises the cost of the update cycle and effectively
imposes a minimum size on a change. The resulting increased batching of changes tends to make
the process more error prone.

Maintaining and updating the librarian and Master List data bases was a tedious error-prone
operation. In these cases the tools are in a relatively early stage, and not all of the improvement..;
possible to the user interaction have yet been made.

A strong requirement for some additional tools has been established. The requirement for a
Consistent Compilation Tool (for detemlining the modules to recompile and the order of
recompilation) was proposed quite some time ago by members of our staff (not participants in the
Pilot project), but the necessity for such a tool was not generally accepted at that time; the
requirement for a Consistent Compilation Tool is now quite clear. As a result of the Pilot
experience. The requirement for a Consistent Binding Tool has been also now established,
whereas before the Pilot project this was not a particularly visible requirement. A third addition
which would have a large positive impact is a tool for controlling and automating the incremental
integration process.

The design and implementation of such tools constitutes a major effort in itself. Central to any
solution is an integrated data base.

Acknowledgements

We are particularly indebted to our colleagues Hugh Lauer, Paul McJones, Steve Purcell, Dave
Redell, Ed Satterthwaite, and John Wick, who both lived through, and furnished the raw data for,
the experiences related in this paper and provided encouragement and constructive criticism for the
text itself. We arc also indebted to Jude Costello for a her many suggestions for improvement in
this paper.

12 T. R. HORSU'(\\:U \V. C LY:\CH

References

Geschke, C M., Morris, 1. H., and Satterthwaite, E. H., "Early Experience with Mesa,"
Communications of the ACAI 20 8 (August 1977), pp. 540-553.

Lampson, B. W., "An Open Operating System for a Single User Machine," to be published,
Proceedings - Seventh Symposium on Operating System Principles, (Dec., 1979)

Lampson, B. W. and Redell, D. D., "Experience with Processes and Monitors in Mesa," to be
published, Proceedings - Seventh Symposium on Operating System Principles, (Dec., 1979)

Lauer, H.C and Satterthwaite, E.H., "The Impact of Mesa on System Design," Proceedings of the
4th International Conference on Software Engilleering, 1979

Metcalfe, R. M., and Boggs, O.R., "Ethernet: Distributed Packet Switching For Local Computer
Net\\orks," Communications of the ,lCM 19 7 (July 1976), pp. 395-404

Mills, H. D., Chief Programmer Teams: Techniques and Procedures; IBM Internal Report, January
1970

Mitchell, 1. G., "Mesa: A Designer's User Perspective", Spring CompCon 78 (1978), pp. 36-39

Mitchell, 1. G., Maybury, W., and Sweet, R. E., "Mesa Language Manual," Technical report CSL-
78-1, Xerox Corporation, Palo Alto Research Center, Palo Alto, California, February 1978.

Parnas, O. L, "A Technique For Software Module Specification With Examples," Communications
of the AC!'v[15 5 (May 1972), pp. 330-336

Redell D. D., Dalal, Y. K., Horsley, 1'. H., Lauer, H. C, Lynch, W. C, Melones, P. R., Murray,
H. G., and Purcell, S. C, "Pilot: An operating system for a personal computer," to be
published, Proceedillgs - Seventh c)'ymposiufl/ on Operating System Prillciples, (Dec., 1979)

Boggs, D., Lampson, B. W., McCreight, E., Sproull, R., and Thacker, C P., "Alto: A Personal
Computer", Technical report to be published, Xerox Corporation, Palo Alto Research
Center, Palo Alto, California, 1979.

