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1. Introduction 

During early 1973, the Xerox Palo Alto Research Center designed the Alto computer system 

("Alto") as an experiment in personal computing, to study how a small, low-cost machine could be 

used to replace facilities then provided only by much larger shared systems. During the succeeding 

six years, the original Alto underwent several engineering enhancements to increase its memory 

capacity and reduce its cost, but the basic capabilities of the system have remained essentially 

unchanged. There are now (summer 1979) nearly a thousand Altos in regular use by computer 

science researchers, engineers, and secretaries. 

The primary goal in the design of the Alto was to provide sufficient computing power, local 

storage, and input-output capability to satisfy the computational needs of a single user. The 

standard system includes: 

• An 875 line raster-scanned display. 

• A keyboard, "mouse" pointing device with three buttons, and a five-finger keyset. 

• A 2.5 Mbyte cartridge disk file. 

• An interface to the Ethernet system ("Ethernet"), a 3 Mbitlsecond communication 

facility. 

• A microprogrammed processor that controls input-output devices and supports 

emulators for a number of instruction sets. 

• 64K 16-bit words of semiconductor memory, expandable to 256K words. 

All of these components with the exception of the user terminal are packaged in a small cabinet 

which is an unobtrusive addition to a normal office. The terminal, keyboard, and pointing device 

are packaged for desktop use (Figure 1). 

The Alto has led to an entirely new computing environment. Many applications devote the 

entire machine to interacting with a user and satisfying his needs; examples are document 

production and illustration, interactive programming, animation, simulation, and playing music. 

These individual applications are supplemented by a large number of services available via 

communications; examples are printing service, mailbox services for delivering electronic mail, and 

bulk file storage services. The Ethernet has also given rise to applications that use several Altos 

concurrently to furnish additional computing power or to allow several people at their machines to 

interact with one another. 

The principal characteristics of the Alto processor are described in Section 2. Sections 3 to 6 

describe input-output controllers for the display, disk, Ethernet, and printer. Section 7 surveys the 

environment and applications that grew up for the Alto. Section 8 offers a brief retrospective look 

at the design. 
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Figure l. The Alto personal computer, showing a user at work with the display, mouse, and keyset. 
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2. The Alto processor 

The major applications envisioned for the Alto were interactive text editing for document and 

program preparation, support for the program development process, experimenting with real-time 

animation and music generation, and operation of a number of experimental office information 

systems. The hardware design was strongly affected by this view of the applications. The design is 

biased toward interaction with the user, and away from significant numerical processing; there are 

extensive user input-output facilities, but no hardware for arithmetic other than 16-bit integer 

addition and subtraction. 

The processor is microcoded, which permitted the machine to start out with rather powerful 

facilities, and also allows easy expansion as new capabilities are required. The amount of control 

store provided has evolved over time as shown in Figure 2. Initially, the machine contained only 

lK words, implemented with PROM. The most recent version provides 4K words, of which lK is 

implemented with PROM, and 3K is RAM. 

Main Memory Control Memory Processor Memory 
Year 

Size [rechnology Size [rechnology Size !Technology 

1973 64K 1K x 1 Dynamic lKPROM 256x4 32 R registers 16 x4 
Parity Metal gate PMOS Schottky bipolar Schottky bipolar 

1K PROM PROM as above 32 R registers 16 x 4 1974 1K x 1 RAMs 
lKRAM Schottky bipolar 32 S registers Schottky bipolar 

1975 64K 4K x 1 DynamiC 
Error Correction Sigate NMOS 

2KPROM 
1K x 4 PROMs 

1976 Schottky bipolar 
1KRAM RAM as above 

1977 256K 16K x.l Dynamic 
Error Correction Sigale NMOS 

lKPROM PROM as above 32 R registers R regs as above 
1979 3KRAM 4K x 1 RAMs 8 x 32 S registers 256x4 

Static NMOS Schottky bipolar 

Figure 2. Sizes and technologies used for the principal memories in the Alto. 

, 
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The micromachine is shared by sixteen fixed priority tasks. The emulator, which interprets 

instructions of the user's program, is the lowest priority task; the remaining tasks are used for the 

microcoded portions of input-output controllers and for housekeeping functions. Control of the 

micromachine typically switches from one task to another every few microseconds, in response to 

wakeup requests generated by the liD controllers. The emulator task requests a wakeup at all times, 

and runs if no higher priority task requires the processor. There is usually no overhead associated 

with a task switch, since the microprogram counters (MPCs) for all tasks are stored in a special high 

speed RAM, the MPC RAM. The main memory is synchronous with the processor, which controls all 

memory requests. 

The task switching mechanism provides a way of multiplexing all the system resources, both 

processor and memory cycles, among the consumers of these resources. In most small systems with 

single-ported memories, the memory' is multiplexed among the liD controllers and the CPU, and 

when an liD controller is accessing the memory, the CPU is idle. In the Alto, the processor is 

mUltiplexed, and multiplexing I)f the memory is a natJral consequence. By sharing the hardware in 

this way, it has been possible to provide more capable logical interfaces to the liD devices than are 

usually found in small machines, since the liD controllers have the full processing capability and 

temporary . storage of the micromachine at their disposal. 

The standard Alto contains controllers for the disk, the display, and the Ethernet. The disk 

controller uses two tasks, the display and the cursor use a total of four tasks, and the Ethernet uses 

one task. In addition to the emulator task, there is a timed task that is awakened every 38 ILs, anq a 

fault task that is awakened whenever a memory error occurs and is responsible for logging the error 

and generating an interrupt. The timed task refreshes the main memory, and maintains the real

time clock and an interval timer accessible from the emulator. 

The main memory size of the Alto was initially 64K 16-bit words, implemented with lK bit 

semiconductor RAM chips. As semiconductor technology improved, the memory size was increased, 

as shown in Figure 2. The initial version of the machine provided parity checking; later 

configurations employ single error correction and double error detection. Memory access time is 

850ns (five microinstruction cycles), and either one or two words can be transferred during a single 

memory cycle. In machines with more than 64K, access to extended memory is provided via bank 

registers accessible to the micromachine; the standard instruction set and liD controller microcode 

make use of the additional' memory only in limited ways. The reason for this clumsy arrangement 

is that the lifetime of the Alto has been longer than originally anticipated, and the additional 

memory was an unplanned addition. 

Because the machine was intended for personal use, protection and virtual memory facilities 

normally included to support sharing were omitted from the Alto. 

The multitasking structure of the processor led to an extremely simple implementation. The 

processor is contained on five printed circuit boards, each of which contains approximately 70 small 

and medium-scale TIL integrated circuits. Each of the three standard lIO controllers occupy a board 

with about 60 lCS. The main memory uses 312 chips. 
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2.1 Emulators 

There are emulators for several instruction sets, including BCPL [Richards], Smalltalk [Kay, 

Ingalls], Lisp [DeutsCh], and Mesa [Mitchell et an. The BCPL emulator is contained in the PROM 

microstore, while the others are loaded into RAM as needed. The BCPL instruction set was chosen 

because it is straightforward to implement and because we had previously developed a BCPL 

compiler for a similar instruction set. BCPL is a typeless implementation language; it has much in 

common with its well-known descendant, C [Ritchie et an; The language was used extensively to 

build Alto software; very little assembly language code has been written for the Alto. 

The BCPL instruction set and the virtual machine it provides are summarized in Figure 3. 
Instructions are divided into four groups: 

M-Group instructions transfer 16-bit words between memory and one of the four 

accumulators ACO-AC3. These instructions provide four indexing modes, and one level of 

indirection is allowed. The effective address is a 16-bit quantity, allowing access to a 64K 

word address space. 

J-Group instructions include unconditional and subroutine jumps, and two instructions that 

increment and decrement a memory location and test the resulting value for zero. The 

effective address for these operations is calculated in the same way as for the M-Group. 

A-Group instructions provide register-to-register arithmetic operations; shifts by one or 

eight places, and conditional skips based on the result of the· operation. 

S-Group instructions provide a number of functions that do not fit within the framework 

of the first three groups. Instructions are provided for loading, reading, and transferring 

control to special microcode in the writeable microstore, operating the real time clock and 

interval timers, optimizing BCPL procedure calls, accessing the extended memory, and 

maintaining specialized data structures used by the display. 

The BCPL emulator provides a vectored interrupt system with 16 interrupt channels. There is 

no hardware support for interrupts; they are implemented entirely in microcode. (Note that the 

interrupt system is completely separate from the task-switching mechanism; the latter multiplexes 

the micromachine, while the former multiplexes the emulator.) When the microcode associated with 

an I/O controller wishes to cause an interrupt, it ORS one or more bits into a micromachine register 

NIW (New Interrupts Waiting). If the i-th bit of NIW is set, an interrupt on channel i is requested. 

At the start of every macroinstruction, NIW is tested; . if it is nonzero, and if the corresponding 

channel is active, the emulator's macroprogram counter is saved in a fixed location in main memory 

and control is transferred to a location taken from a sixteen word table that starts at a fixed 

location. Individual channels are made active by setting bits in another fixed location. There are S

group instructions to enable and disable the entire interrupt system, and to return control from an 

interrupt routine. 
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M·Group 

1: AC" MEM[EfAd) 
2: MEM[EIAd) .. AC 

Effective Address Calculation: 

J·Group 

0: PC" EfAd (Jump) 

EfAd .. selecton X into: 

case 0: D 
case 1: PC + sign extended D 
case 2: AC2 + sign extended D 
case 3: AC3 + sign extended D 

if I # 0 then EfAd" MEM[EfAdJ 

1: Ac3" PC + 1, PC" EfAd (Jump To Subroutine) 

A·Group 

2: MEM[EfAd]" MEM[EfAd] + 1, if MEM[EfAdJ = 0 then Skip 
3: MEM[EfAd]" MEM[EfAd] . 1, if MEM[EfAd] .. 0 then Skip 

Afunc: 

0: DestAc" NOT SrcAc 
1: DestAc"· SrcAc 
2: DestAc" SrcAc + 1 
3: DestAc" SrcAc 
4: DestAc" DestAc + SrcAc 
5: DestAc" DestAc . SrcAc 
6: DestAc" DestAc . SrcAc ·1 
7: DestAc" DestAc AND SrcAc 

S·Group 

Memory 

SrcAC S ACO 

E AC1 L 
E AC2 DestAC C 
T AC3 

SrcAc DestAc 

Ski Skip Sensor 

Shift: Cin+-

0: 0: Carry 
1: LHS1 1: 0 
2: RSH1 2: 1 
3: Byte 3: Carry' 

Swap 

To DestAc if NL .. 0 

Carry 

.-Qf 

Cresull 
Result 

16 

Skip if: 

0: Never 
1: Always 
2: Cresult. 0 
3: Cresult # 0 
4: Result .. 0 
5: Result #0 
6: (Result = 0) OR (Cresult = 0) 
7: (Result # 0) AND (Cres,ult # 0) 

Figure 3. Summary of the BCPL instruction set and its virtual machine. 
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2.2 Input-output 

I/O devices may be connected to the Alto in one of three ways, depending on the bandwidth 

required by the device and on the degree to which the controller is supponed by specialized 

microcode. The three methods of connection and the level of the machine used to interface the 

hardware are summarized in the matrix of Figure 4. 

P 
H 
Y 
5 
I 
C 
A 
L 

C 
0 
N 
N 
E 
C 
T 
I 
0 
N 
5 

Parallel 
1/0 Port 

Memory 
Bus 

Processor 
Bus 

BCPLorAsm 
(Loads&Stores) 

Impact printer 

Prom programmer 

CPU debugger 

XV input tablet 

Cassette Tape 

Keyboard· 

Keyset" 

Console computer 

" Included in standard Alto 

LOOICAL INTERFACE LEVEL 

Emulator or Timed 
Task Microcode 

Stitch welder 

Low speed 
raster scanner 
raster printer 

Terminal 
concentrator 

Modem interface 

Mouse " 

Hardware Multiplier 

Private Task 
Microcode 

Medium speed 
raster scanner 

Console computer 

Display" Disk " 

Ethernet" Arpanet 

9 Track Tape 

High speed 
raster printer 

Audio 

Modem interface 

Figure 4. Schematic illustration ofinputloutput attachments used on the Alto. 

Device controllers that require significant bandwidth, or exploit the computational facilities of 

the micromachine, are connected directly to the processor bus, and use one or more of the sixteen 

microcode tasks. The disk, display, and Ethernet controllers, which are pan of the standard Alto, 

are interfaced in this way. The controller for a high-speed raster-scanned printer is an example of a 

non-standard 110 controller interfaced directly to the processor bus. These devices are described in 

detail in later sections. 
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Processor bus devices have one or more dedicated tasks that provide processing and initiate all 

memory references for the device controller; the tasks communicate with programs through fixed 

locations and data structures in main memory, and through interrupts. By convention, the second 

page of the address space is reserved for communication with devices of this type. Since there is 

only one processor, data structures shared between 110 controllers and programs can be interlocked 

by simply not allowing task switches in critical sections of device control microcode. 

The amount of data buffering in a device controller, its task priority, and the bandwidth of the 

device trade off much as they do in systems which have DMA controllers competing for memory 

access. The controller must have enough buffering so that the wakeup latency introduced by higher 

priority devices will not cause the buffer to over- or underrun before it can obtain service. The 

disk, for example, has only one word of buffering (lOJLs at I.5Mbits/sec), and is therefore· the 

highest priority task. The Ethernet requires more bandwidth, but since it has a 16-word buffer, it 

can tolerate much greater latency than the disk (87JLs at 3Mbits/sec), and hence runs at low priority. 

The display requires the highest bandwidth but it also has a 16-word buffer, so it can tolerate 

slightly more latency than the disk (12.8 JLs at 20 Mbits/sec), and is therefore between the disk and 

Ethernet in priority. 

It is aiso possible to connect a device directly to the processor bus without using a separate 

task. The microcode of the timed task, normally used to refresh the memory, may be modified to 

operate devices that require periodic service. When this is done, the timed task microcode is run in 

the writeable microstore. The mouse. a pointing device that provides relative positioning 

information by being rolled over a work surface. is operated by the timed task. At 38 JLs intervals, 

the mouse is interrogated for changes in position, and two memory locations corresponding to the 

mouse x and )' coo.rdinates are incremented or decremented when a change occurs. Specialized 

devices may also be operated directly by the emulator microcode; a hardware multiplier is an 

example of this type of device. An S-group instruction is added in the writeable microstore that 

loads the registers of the multiplier from the ACS, initiates the desired operation, and copies the 

results back into ACS when the operation terminates. 

Devices with less demanding bandwidth requirements, or with computational requirements that 

can be satisfied by an emulator program rather than by a microprogram, are interfaced to the 

memory bus of the Alto. The advantage of this method is that no special microcode is needed. 

Communication between the hardware and a program is done using ordinary memory reference 

instructions, as in the PDP-II. The device controller decodes the memory address lines and delivers 

or accepts data under control of a read/write signal generated by the processor. The last two 256-

word pages of the address space are reserved by the hardware for this purpose. Since a memory 

access requires five microInstruction cycles, these devices cannot transfer data as rapidly as those 

connected directly to the processor bus, where the transfer is controlled by the microinstruction and 

requires only one cycle. In the standard Alto, the keyboard and key set are examples of devices 

handled in this way. 
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It is also possible to provide special microcode for devices that interface to the memory bus. A 

network gateway that connects 64 300-baud communication lines to the Ethernet has been 

implemented in this way. The scanner hardware consists of a single bit of buffering for the output 

lines. and level conversion for the input lines. Serialization and deserialization of eight-bit 

characters is done by microcode· that is a part of the timed task; characters are passed to a 

macroprogram via queues maintained in main memory by this microcode. The macroprogram 

implements the higher level communication protocols. 

The standard Alto provides a third method of connecting simple devices, the parallel I/O port. 

This is a memory bus device, and consists of a single 16-bit register that can be loaded by a store 

instruction, and a set of 16 input lines that can be read by a load instruction. The device controller 

does not occupy a card slot in the backplane, but is external to the machine, and attaches via a 

cable to a standard connector on the back of the machine, which in tum is wired to the memory 

control board. A large number of devices have been connected to the Alto through this simple 

interface, ;ncluding low speed impact printers,:i PROM programmer, a stitch welding machine for the 

fabrication of circuit boards, and several type~of low-speed raster printers. Most devices that use 

speed-insensitive handshake protocols can be interfaced via the parallel 110 port; such devices 

require neither specialized hardware nor microcode. 

2.3 Details of the micromachine- control 

The microinstruction format of the Alto is shown in Figure 5, and the principal data paths and 

registers of the micromachine are shown in Figure 6. Each microinstruction specifies: 

• The source of processor bus data (BS). 

• The operation to be performed by the ALU (ALLTF). 

• Two special functions controlled by the Fl and F2 fields. 

• Optional· loading of the T and L registers (LT. LL). 

• The address of the next microinstruction (NEXT). 

All microinstructions require one clock cycle (170ns) for their execution. If a microinstruction 

specifies that one or more registers are to be loaded, this happens at. the end of the cycle. 

The Alto does not -have an incrementing microprogram counter. Instead, each microinstruction 

specifies the least significant ten bits of the address of its successor using the NEXT field in the 

instruction. This successor address may be modified by the branch logic or by the 1/0 controllers. 

There are special functions to switch banks in the microstore, allowing access to the entire 4K 

address space. The address of the next microinstruction to be executed by each of the 16 tasks 

supported by the micromachine is contained in the 16-word MPC RAM. This RAM is addressed by 

the NTASK register. which contains the number of the task that will have control of the processor in 

the next cycle. The MPC RAM value for the current task is updated every microinstruction cycle. 
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Execution of a microinstruction begins when the instruction is loaded into the Microinstruction 

Register (~IR) from the control store outputs. At this time, the information on the :SEXT bus is 

written into the MPC RAM at the location addressed by the :STASK register. This value is the address 

of the next instruction; within a short time, it appears at the output of the MPC RAM, the next 

instruction is fetched from the control store, and the cycle repeats. 

ALU Function Bus Source Function 1 Function 2 

0: Bus 0: "R 0: 0: 
1: T 1: R" 1: MAR" 1 : Bus=O? 
2: BusORT" 2: ·1 2: Task 2: L(O? ? "' > Branch condition: 
3: BusANDT 3: "S 3: Task Specific 3: L"O? Next.9 .. Next.9 OR condition 
4: Bus XOR T 4: S" 4: .. LLSH 1 4: Next .. Next OR Bus 
5: Bus + 1· 5: "MD 5: .. L RSH 1 5: AluCarry? 
6: Bus·1· 6: "Mouse 6: .. LLCY8 6: MD" 
7: Bus + T 7: "IR[8:15] 7: .. Constanl 7: .. Constant 
10: Bus· T 10·17: Task Specific 10·17: Task Specific 
11 : Bus·T·1 
12: Bus+T+1· 
13: Bus + Skip· 
14: Bus AND T" • "' > T is loaded from ALU 
15: BusANDT' result, not from the Bus 
16: not used 
17: not used 

Figure 5. Alto microinstruction format 

Conditional branches are implemented by oRing one or more bits with the NEXT address value 

supplied by the control store. The source of the data to be ORed is usually specified by the F2 

field; it may be a single bit, for example the result of the BUS=O test, or it may be several bits 

supplied on the NEXT bus 'by an 110 controller or by specialized logic. When the value consists of 

an n-bit field, a 2n-way branch, or dispatch is done. Because the next instruction is already being 

fetched while the instruction is being executed, conditional branches and dispatches affect not the 

address of an instruction's immediate successor, but the instruction following that one. It is possible 

to execute branches in successive instructions, providing this pipelining is taken into account by the 

microprogrammer. This branchi~g scheme constrains the placement of instructions in the 

microstore, but the constraints are satisfied semi-automatically by the microprogram assembler. 

31 
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-+l NTASK, '4 ,.lCTASK, 
RSEUOA1 
BS 0:21 

PROM ALUFI031 , 
~ MIR LL MPC r Control Memory 22 LT 12 

F10:31 1K· 2Kw x 32 
10 F20:31 

~ RAM 
Cant rol Memo ry R/W 

Address 1K·3Kwx32 

Next Address Bus (10 bits) 

Y Priority 
Encoder Wakeup Requests (6 free) 

-~ 
Shift 

CTASK ~ RSEL[0:2j "' III 

RSEUO:41 S R RSEU3:41 

L 8x32wx16 32w x 16 IRr1:21 Disk Display Ethernet 
IRj3:4J Control Control Control 

BS[O:2J Constants Branchl 

256w x 16 Dispatch 
ALU results Logic 

~ ~ ) 

-! ~ Processor Bus (16 bits) , ,I-

~ 

.-- J ,jr ~ 

P 
, 

T 
LT IR I Drivers and Parity I 1 

~ R 

f [0:3] 0 I Skip II Carry I to-

.:-:-\ / Flag Flag 
ALU ~ , 

Data Data 

J Main Memory Memory Bus 
LL L I MAR 1/0 Devices 64K· 256Kw x 16b 

Decode 
error corrected 

and Address jAddreSS 

I Control 

Figure 6. Alto micromachine structure. 
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Task switching in the Alto is done by changing the value in the ?\T ASK register. As long as the 

value in this register does not change. a task will remain in control of the processor. A task gives 

up control of the processor by executing a microinstruction containing Fl = TASK. This function 

loads the ~TASK register from the output of a priority encoder whose inputs are the 16 wakeup 

request lines, one per task. An liD controller indicates its need for service from the processor by 

asserting the request line associated with its task. If it is the highest priority requester when the 

running microprogram executes the TASK function, NIASK will be loaded with its task number; after 

a one instruction delay, the new task will acquire the processor. In the microinstruction following a 

TASK, a microprogram may not execute a conditional branch, and it must not allow a task switch 

when it has state in the L or T registers, since none of the state of a task other than the MPC value is 

saved across a task switch. With these exceptions, there is no overhead associated with task 

switching. 

The conditions that cause liD controllers to request wakeups are determined by the controller 

hardware, and are usually simple - an empty buffer requires data, or a sector pulse has been 

received by the disk controller, for example. When the microcode associated with the controller has 

processed the request and commanded the controller to remove the wakeup request, the 

microprogram then TASKs, relinquishing control of the processor. 

By convention, eight of the possible values of the Fl and F2 fields of the microinstruction are 

task-specific; that is, they have different meanings depending on which task is running. Each liD 

controller can determine when its associated task has control of the processor by decoding the 

l\'T ASK lines. When the task associated with a controller is running, the controller decodes the Fl 

and F2 lines and uses them to control data transfers. to specify branch conditions, or for other 

device-specific purposes. This encoding reduces the size of the microinstruction. 

The intimate coupling between the micromachine and the liD controllers has proven to be one 

of the most powerful features of the Alto. When a new liD device is added, the controller not only 

has at its disposal the basic arithmetic and control facilities of the micromachine, but it can also 

implement specialized functions controlled by the task-specific function fields of the 

microinstruction. This has led to extremely simple hardware in the liD controllers. Most controllers 

consist of a small amount of buffering to absorb wakeup latency, registers and interface logic to 

implement the electrical protocols of the device, and a small amount of logic to decode the Fl and 

F2 lines, generate wakeups, and do whatever high speed housekeeping is required by the device. 

Since the processor makes all the memory requests, controllers never manipulate memory addresses, 

and the usual DMA hardware found in most minicomputers is eliminated. 

It might appear that sharing the processor in this way would result in a significant degradation 

in performance, particularly for low priority tasks such as the emulator. This is in fact not the case; 

the major bottleneck in the system is the memory. Since most computation can be overlapped with 

memory operation, the performance of the Alto compares favorably with other systems employing 

single-ported, non-interleaved memory at comparable I/O bandwidths. 
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2.4 Details of the micromachine-arithmetic 

'me arithmetic section of the Alto contains the following components: 

A 16-bit processor bus, used to transmit data between the subsections of the processor, the 

memory, and the 110 controllers. The source of bus data is controlled by the BS and the 

Fl fields of the instruction. 

A bank of 32 16-bit R registers, and eight banks of 32 16-bit s registers. These registers 

have slightly different properties, and together constitute the high speed storage of the 

processor. As better integrated circuit technology has become available, the number of S 

registers has been increased as shown in Figure 2. Rand S are addressed by the RSEL 

field of the instruction; either R or S (but not' both) can be used during a single 

instruction. Reading and loading of Rand S are controlled by the BS field of the 

instruction. 

A 16-bit T register. T is loaded when the LT bit is set in the microinstruction. The source 

of T data is determined by the ALU function being executed; it is usually the bus, but may 

be the output of the ALt.:. T is one of the inputs of the ALU. 

A 16-bit Arithmetic/Logic Unit (ALU). The ALU is implemented with four sN74s181 ICs. 

These devices can provide 64 arithmetic and logical functions, most of which are useless. 

The fourteen most useful functions are selected by the four bit ALUF field of the 

microinstruction, which is mapped by a PROM into the control signals required by the 

chips. 

A 16-bit L register. L is loaded from the ALU output when the LL bit is set in the 

microinstruction. 

A shifter capable of shifting the data from L left or right by one bit position and 

exchanging the two halves of a word. Simple shifts are controlled by the Fl field of the 

instruction (Fl = 4, 5, 6). In the emulator task, these functions may be augmented by the 

F2 field to do specialized shifts required by the BCPL instruction set, and to do double

length shifts for microcoded multiply and divide. 

A 16-bit Memory Address Register (MAR), described later. 

A 256 word by 16-bit constant memory, implemented with PROMS. This memory is 

addressed by the concatenation of the RSEL and BS fields of the instruction; when Fl or 

F2=CO~STA~'T, the normal actions evoked by RSEL and BS are suppressed, and the 

selected constant is placed on the bus. Approximately 200 of the 256 available constants 

have been used. 

An Instruction Register (IR) that holds the current macroinstruction being executed by the 

BCPL emulator. 
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The main memory is synchronous with the processor, which initiates all memory references by 

loading \1AR with the 16-bit address of a location. During a memory reference, data may be 

transferred between the memory and any register connected to the bus, including registers in the 110 

controllers. The memory can transfer a doubleword quantity during two successive instruction 

cycles, as part of a single memory cycle. Using this access method, which was provided to support 

high performance peripherals such as the display, the peak memory bandwidth is 32bits/(6*170ns) 

= 31.3 Mbits/sec. 

The arithmetic section of the Alto contains a small amount of hardware to support the emulator 

for the BCPL instruction set. There are special paths to supply part of the R address from the STeAC 

and DestAC fields of JR, logic to dispatch on several fields in JR, and hardware to control the shifter 

and maintain the CARRY and SKIP flags. The total amount of specialized hardware is less than ten 

ICs. 

No special hardware has been added to support emulators for other instruction sets. These 

usually specify the operation to be performed with a single eight-bit hyte, followed by one or two 

bytes that supply additional parameters for some of the operations. The standard dispatching 

mechanism is used to do an initial 256-way dispatch to the microcode that emulates each 

macroinstruction. 

The dispatching mechanism has been used for other applications. Although the micromachine 

does not support subroutine linkage in the hardware, it has been possible to achieve the same effect 

with only a small performance penalty. The calling microcode supplies a small constant as a return 

index (typically in T) which is saved and used as a dispatch value to return to the caller when the 

subroutine has completed its work. The Mesa emulator implements an eight word operand stack by 

dispatching on the value of the stack pointer into several tables of eight microinstructions, each of 

which reads or writes a particular R-register. 

The parallelism available in the microinstruction format encourages the use of complex control 

structures which are often substituted for specialized data handling capabilities; it is usually possible 

to do an arithmetic operation, a branch or dispatch, and at least one special function in each 

instruction. 
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3. User input/output 

The main goals in the design of the Alto's user input/output were generality of the facilities 

and simplicity of the hardware, We also attached a high value to modeling the capabilities of 

existing manual media: after all, these have evolved over many hundreds of years. There are good 

reasons for most of their characteristics. and much has been learned about how to use them 

effectively, The manual media we chose as models were paper and ink (the display), pointing 

devices (the mouse and cursor), and keyboard devices ranging from typewriters to pianos and 

organs. 

3.1 The display 

The most important characteristic of paper and ink is that the ink can be arranged in arbitrarily 

chosen patterns on the paper; there are almost no constraints on the size, shape or position of the 

ink marks. This flexibility is used in a number of ways: 

Characters of many shapes and styles not only represent words, but convey much 

important information by variations in size and appearance (italics, boldface, a variety of 

styles). 

Straight lines and curves make up line drawings ranging in complexity from a simple 

business form to an engineering drawing of an automatic transmission. 

Textures and shades of gray, and color, are used to organize and highlight information, 

and to add a third to the two dimensions of spatial arrangement. 

Halftones make it possible to represent natural images which have continuous tones. 

Fine-grained positioning in two dimensions produces effects ranging from the simple 

(superscripts, marginal notes, multiple columns) to the complex (mathematical formulas, 

legends in figures). 

The high resolution of ink, combined with the absence of positioning constraints, means 

that a large amount of information can be presented on a single page. 

In addition to imaging flexibility, paper and ink have several other important properties: 

Large sizes of paper can present the spatial relationships of many thousands of objects. 

Many sheets of paper can be spread out, so that many pages can be wholly or partially 

visible. 

Many sheets of paper can be bound together, so that one item from a very large collection 

of information can be examined within a small number of seconds. 
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Only one technique is known for approximating all these properties of paper in a computer

generated medium: a raster display in which the value of each picture element is independently 

stored as an element in a two-dimensional array called a bitmap or frame buffer. If the size of a 

picture element is small enough, such a display can approximate the first five properties extremely 

well; about 500-1000 binary (black or white) elements per inch are needed for high quality, or 25-

100 million bits for a standard 8.5xll inch page. Another approach (which we did not pursue) is to 

exploit the fact that unlike paper and ink, the display can provide true gray. If each picture 

element can assume one of 256 intensity values (or a triple of such values for color), almost all 

images which are made on paper can be reproduced with many fewer picture elements than are 

needed if the elements are binary; about 100-150 elements per inch are now sufficient, or 8-18 

million bits for a page. 

Even. eight million bits of bitmap was more than we could afford in 1973. Furthermore, the 

computer display cannot hope to match paper in size, or in the number of pages which can be 

"isible simultaneously. To make up for this deficiency, and to model page-turning, it is necessary to 

alter the image on the screen very rapidly, so that changes in the single screen image can substitute 

for changes in where the eye is looking and for the physical motion of paper. As the number of 

bits representing the image grows, more processing bandwidth is required to compose it at 

acceptable speeds. 

Fortunately, surprisingly good images can be made with many fewer bits, if we settle for 

images which preserve the recognizable characteristics of paper and ink, rather than insisting on all 

the details of image quality. Characters 10 points or larger (these are printer's points, 72 per inch, 

and the characters in this sentence are 10 point) in several distinguishable styles and in boldface or 

italic, almost arbitrary line drawings, and dozens of textures are quite comfortable to read when 

represented by about 70 binary elements per inch; this resolution is also sufficient for crude but 

recognizable characters down to 7 points, and for halftones of similar quality. One page at this 

resolution is about half a million bits, or half of the Alto's one megabit memory. 

The display is an interlaced 875 line monitor running at 30 frames/second. There are 808 

visible scan lines, and 608 picture elements per line. It is oriented with the long dimension vertical, 

and the screen area is almost exactly the same size as a standard sheet of paper (Figure 7). 

Refreshing the display demands an average of 15 megabits/second of memory bandwidth. Since the 

average includes considerable time for horizontal and vertical retrace, the peak bandwidth is 20 

Mbits/second. The 30 Hz refresh rate results in flicker which most people do not find 

objectionable, provided the image does not contain large amounts of detail which appears in only 

one of the two interlaced fields. Flicker is reduced by the use of a P40 phosphor in the CRT, rather 

than the faster P4 often used; the greater persistence of images which are being moved has not 

proved to be a problem. 
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OverlappingJ to be an effective toolJ must 
first have all things in the picture roughly 
sketched as if they were transparent-as if 
you could see through them. The objects 
are first drawn as if they were made out of 
glass. By beginning with transparent 
objects it is easy to see if they have been 
correctly drawn. In the finished drawing all 
objects will be correctly drawn. 

Figure 7. An example of text and graphics at Alto screen resolution. 
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3.2 Bitmap representation 

A bitmap which can be painted on the display is represented in storage by a contiguous block 

of words. A bitmap on the Alto represents a rectangular image, w picture elements wide and h 

elements high. For simplicity, w must be a multiple of 16, and one row of w picture elements 

corresponds to wll6 contiguous words in the bitmap. As a consequence, two venically adjacent , 

elements correspond to th.e same bit in two words which are wll6 words apan in storage (Figure 8). 

The display microcode interprets a chain of display control blocks stored in memory, with its 

head at a flxed location. Each block specifies its successor, the number of scan lines it controls, the 

left margin (in 16-element units) of the screen area to be painted from the bitmap in storage, the 

address and width of the bitmap array, and the polarity, which determines whether zeros in memory 

are displayed as white (the normal case) or black. The left and right margins not painted from the 

bitmap are filled with zeros: This scheme allows the screen to be divided into horizontal strips, 

each with its own bitmap; its advantages and drawbacks are discussed below. 

To simulate an 8.5xU" page we use a single control block which covers all 808 visible scan 

lines, has no left margin, and is 608 bits (38 words) wide. This is a full screen bitmap; it consumes 

about half the main storage o(the standard machine, and displaying it consumes about 60% of the 

cycles. In return, it can display nearly any image which can appear on a standard sheet of paper. 

More restricted images, however, can be displayed more economically. An ordinary text page like 

this one, for example, can be divided into horizontal strips. The white space in the margins, in 

indentations, and to the right of the last line in each paragraph need not appear in the bitmap. The 

leading between the paragraphs, and the margins at top and bottom, can be represented by control 

blocks specifying a width of zero. For a typical text page these tricks reduce the size of the bitmap 

to about 70% of its full size; pages of program listing are reduced by much more. Furthermore, 

lines can be insened or deleted simply by splicing pointers in the control block ,chain, and pans of 

the image can be scrolled up or down by adjusting the number of scan lines cov'ered by one of the 

zero-width control blocks, without moving anything in storage. 

Unfonunately, these techniques rule out anything except a single column of text in the image, 

since various parts of the image no longer have any supponing bitmap. Multiple columns (unless 

the lines are perfectly aligned), marginal notes, long vertical lines, or windows which do not fill the 

screen horizontally are not possible. We have used multiple control blocks heavily in the Alto's 

standard text editor, which includes extensive facilities for using multiple fonts, controlling margins 

and leading, justification etc. The editor continuously displays the text in its final formatted form, so 

that no separate operations are required to view the final document. In this context the control 

block tricks have made it possible to fit the editor into the machine, which we could not have done 

using a full-screen bitmap. All the other interesting uses of the display, however, have adopted the 

full-screen bitmap so that they could support more general images, and we are convinced that the 

cost of memory is no longer high enough to justify giving up this generality. 
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Figure 8. The display data structure and its mapping onto the screen. The top part of the figure 
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pattern of 1's in the bitmap corresponds to the pattern of black dots on the screen. 

J 
C. 



20 ALTO: A PERSO~AL COMPUTER 

3.3 Composing the image 

Becaus~ many bits are needed to display an image. we have found the machine's ordinary data 

manipulation instructions inadequate for handling images. It is important to have fast ways of 
building up the most common kinds of images and making certain common changes (e.g., moving 

or scrolling a window). For this purpose the Alto has one major fi1icrocoded operation called BitBlt 

(for bit boundary block transfer), with a surprising number of uses. It works on rectangles within 
bitmaps; such a rectangle is defined by the width of the bitmap (which determines. the spacing in 
storage of vertically adjacent elements), the address of the bit which corresponds to the upper left 

corner of the rectangle. and the height and width of the rectangle (in bits). BitBlt takes two such 

rectangles. called the source and the destination, and does 

destination ~ F (destination, source) 
where F (d, s) can be s (move), d OR s (paint), d XOR s (invert) or d AND s (erase), or any of these 

with s complemented. It is also possible to supply a 16x4 rectangle for the source and have it used 
repetitivel~/; this is useful for p!"Oducing uniform textures. The properties of BitBlt, which was 

designed by Dan Ingalls, are discussed in more detail in [Newman-Sproull]. where it goes under the 
name RasterOp. 

BitBlt has a large number of applications. among them 

Painting characters from a jont. which is simply another bitmap, held somewhere in 

storage. that contains images of the characters. It is interesting to note that "characters" 

can also be used to represent various specialized kinds of graphics. such as the symbols in 

hardware logic drawings. 

Drawing horizontal and vertical lines (which are just narrow rectangles). 

Filling in rectangular areas with textured patterns. 

Scrolling an image across a fixed rectangular window on the screen, or moving such a 
window around on the screen. 

Moving an image onto the screen from a copy elsewhere in storage. 

Saving part of the image in memory that is not part of the display bitmap. Later, the 

saved image can be copied back to cause it to reappear on the screen. 

The Alto also has a specialized operation for painting characters; it is considerably less flexible than 

BitBlt. but easier to invoke and more efficient. 

Sometimes one would also like fast operations for painting arbitrary lines and curves. and for 
filling solid areas bounded by such shapes. but so far we have not found the need for these to be 

great. Instead. these requirements are adequately met by the Alto's ordinary memory reference 

instructions, which can be used to randomly access and update the display with complete flexibility. 

We have found this to be quite important, and believe that it is a significant advantage of the Alto 
architecture over conventional frame-buffer organizations. The ability to reuse part or all of the 

bitmap memory for other purposes when a full-screen display is not required has also been very 

important; with the decreasing cost of memory this is no longer such a significant consideration. 
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3.4. Display hardware 

This display is supported by three microcode tasks and some very simple hardware (Figure 9). 

Serial video data is clocked by a 50 ns bit clock; everything else is clocked by the machine's 170 ns 

main clock, which is chosen to be an integral submultiple (224) of the display's line rate 

(875*30=26.25 kHz). A 16 word RAM and a one word register implement a FIFO buffer and 

synchronizer between the processor bus and the shift register which serializes data fOf the display. 

There is a sync generator with a counter and PROM for horizontal sync and one for vertical sync, 

and logic to wake up the aata task whenever the FIFO is not full, the line task when horizontal 

blanking starts, and the field task when vertical blanking starts. There is also some logic to support 

the cursor described in section 3.5. 

Processor Bus 

FIFO 

Conlroller Status 

CTASK 

F2rO:31 

F2 
~ Decode ~ ContrOl 

Signals 

r 

r 

r 

1----....... Video to 
Display 

Dispatch Next 
Address Logic 

Sync, 
Wakeup 
Request 
Logic 

r 
Wakeup 
Request 

Control Block Format: 

o 

2 

3 

ReslpOl1 

Poi nter to next control block or zero if last 

Left Margin I Width 

Bitmap memory address 

Height 

Figure 9. The display controller. 
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The field task runs 60 times a second, and is responsible for initializing the line task at the 

head of the chain of control blocks. It also generates a 60 Hz interrupt. The line task runs every 

38 JLs; it initializes the left margin width, bitmap address and bitmap width for the data task, and 

advances to the next control block if the current one is exhausted. When no control blocks remain, 

it goes to sleep until reawakened by the field task. The data task outputs zeros until the left margin 

is exhausted, then fetches doublewords from storage and delivers them to the FIFO until the bitmap 

width is exhausted, after which it goes to sleep until reawakened by the line task. A doubleword 

fetch takes six cycles or 1.05 JLs, and the 32 bits are consumed in 1.6 JLs, so the data task consumes 

two thirds of the machine while data is being displayed (which is 73% of the time, the rest being 

spent in retracing). 

3.5 Pointing 

A user working interactively with images frequently points at parts of the image, to identify the 

spot where something should be done, to select a menu item, to indicate the comers of a region, 

etc. For this purpose the Alto has a device called a mouse, which fits comfortably under a hand 

and can be rolled around on the work surface [English et an. The mouse is supported on three ball 

bearings, and the x and y rotations of one of these bearings are sensed by the Alto. The hardware 

senses motion by ±l increments in each direction (one unit is roughly 11200 inch), and microcode 

running in the timed task uses this information to update a pair of mouse coordinates in storage. 

Often it is also nice to be able to draw, and the mouse can do this too, albeit somewhat clumsily. 

When drawing is important, a tablet is used. but this device interferes so much with the keyboard 

that it is not generally popular. 

It is essential to have visual feedback which indicates the mouse position, since there is no 

direct visual or tactile connection between the mouse position and anything in the image on the 

screen. This feedback is provided by the cursor, which is a special 16x16 bitmap stored at a fixed 

place in memory, together with x and y coordinates that control where it is displayed. The cursor 

has its own microcode task, which runs after the display's line task and loads two hardware registers 

with the proper cursor data for the current scan line, and the x coordinate at which its first element 

should be displayed. The hardware starts shifting out the data when the display reaches the 

specified picture element, and it is ORed with the main display data. The connection between the 

mouse and the cursor coordinates is established entirely by software, which may, for example, 

restrict the cursor to some region of the screen, force it to move on a grid to facilitate lining things 

up, or make it "snap" onto sensitive points when it approaches close to them. Much use is made of 

the fact that the cursor image, though small (about 1/4" square), is programmable. This turns out 

to be extremely valuable, because the user is much more likely to be looking at the cursor than 

anywhere else on the screen. A remarkable variety of shapes can be represented on those 256 bits, 

and a great deal of important information easily and unintrusively conveyed. 
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Another important property of the mouse is the three buttons on its top surface. These allow 

the user to specify a· number of commands using the same hand with which he is pointing, 

especially when the meanings of the buttons are modified by shift keys on the keyboard, or by 

taking account of the duration or frequency of clicks. The current state of each button (up or 

down) appears as three bits in a special memory location, so that the program is free to attach 

meaning to any detail of the user's interaction with the buttons. 

3.6 Keyboard 

The Alto has a standard office typewriter keyboard. augmented with a small number (8) of 

extra keys. The keyboard appears to the program as four words of memory; each of the bits in 

these words reflects the current state of one key (up or down). This allows any key to be used as a 

shift key, and as with the mouse, it permits a variety of non-standard interpretations of the keys to 

be programmed. ranging from repeating keys to a digital electronic organ manual. 
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4. Local storage 

'The Alto has a reasonably powerful and very reliable disk file system, This file system is 

implemented on a 2.5 megabyte moving-head removable-media rigid disk drive with which every 

Alto is equipped. All Alto software can read and write disk files, which are the usual interface 

among Alto software subsystems. 

The disk control1er consists of one board of special-purpose hardware, and a share of the Alto 

micromachine. The disk controller and the file system were designed together, so that the functions 

of the controller match the functions of the file system. Thus, certain file system functions are 

performed entirely by the disk controller to insure speed or reliability. These functions are easily 

implemented because the full power of the Alto processor is available to the controller. 

4.1 File system 

An Alto disk pck contains a set of disk files, A disk file is a sequence of bytes, identified by a 

serial number unique within the disk pack. The disk controller and the file system software 

together implement a set of operations to create, extend, truncate, or delete files, and to read or 

write sequences of bytes within a file. A file is implemented as a non-contiguous sequence of fixed

length pages recorded on the disk pack. Each page of a file except the last is completely full of 

data (Figure 10). 
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The Alto file system is designed to be reliable. Many file systems have the property that bad 

data on a single page may create such confusion that the good data on the rest of the disk is 

practically useless. To control the global damage that could result from localized errors, the Alto 

file system distributes structural information to each page on the disk. Each page contains a special 

record called the label, different from the data record, that says, for example, "I am now serving as 

page 17 of file number 34152." Page 0 of a file, the leader page, holds information about the file: 

its alphanumeric name, the date of last modification, and so on; actual data begins in page 1. The 

distributed structural information recorded in the label (serial number, page number, length) and in 

the leader page (name) is the basic file system data structure. 

The basic data structure is supplemented by a set of hints, performance-improving assertions 

whose truth can easily be verified. Because it is inefficient to scan the entire disk to find the leader 

page of a given file, a directory file maintains hints about file locations. If the directory file says that 

page 0 of file number 3456 is located at disk address 7890, then before doing anything irreversible 

at disk address 7890, the disk controller checks whether the label record at that address admits to 

being page 0 of file 3456. To allow rapid access to a sequence of pages, each label records as hints 

the disk addresses of the immediately preceding and following pages of the file (Figure 10). If hints 

of any sort are found to be erroneous, they can be reconstructed from the distributed structural 

information. In fact, one of the most important programs on the Alto is the hint-reconstructing 

Scavenger. 

The disk controller makes it easy to use hints properly, and to do other common file-system 

operations. A disk operation is invoked with a command block, a group of words in main memory 

that specify a disk address, a page buffer address in main memory, and the transfer operation to be 

performed (Figure 11). The disk controller is activated by putting the address of a command block 

into a particular main memory location. The controller performs the requested operation, writes the 

final status in the command block, and (if all went well) automatically proceeds to the next 

command block in a chain of blocks, linked by pointers. Disk command blocks are designed to be 

included in more complex operating system data structures describing pending disk transfers. 

File system damage results as often from errant software as from errant hardware. The file 

system/disk controller design attempts to minimize damage in two ways. First, each disk command 

block is required to contain the seal, a certain exact bit pattern. The disk controller will stop 

immediately if it encounters an improper seal. Thus if the disk controller is accidentally activated 

on a block of memory that is not a legal disk command block, its seal would probably be improper, 

and file system damage would be avoided. 

The second way to assure file system integrity is to check the label record before reading or 

writing, as mentioned earlier. Many disk controllers in other systems implement a header record for 

each page, separate from the data record, that is checked before reading or writing the data record. 

This strategy provides protection from failures of seeking or sector counting hardware, but not from 

software failures. An Alto disk sector incorporates separate header, label, and data records. The 

disk controller checks the header record to be sure the access hardware works, and then checks the 
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label record to be sure that the file system software works, before reading or writing a data record. 

4.2 Disk inteljace 

lne disk controller consists of two micromachine tasks, four R-registers, about 150 

microinstructions. and 55 MSI TIL rcs (Figure 11). The hardware is modest because it takes 

advantage of the computational power available in the micromachine. The hardware does only 

what the micromachine cannot do, either because of performance limitations or because remote 

sensing or control is involved: cable driving and receiving, data buffering, data serialization and de

serialization, data encoding. sync pattern detection, and micromachine communication. With the 

particular disk drive used on the Alto (Diablo Model 31), the disk controller is responsible for 

encoding data into a self-clocking Manchester code during a write operation, but during a read 

operation the disk drive itself performs data-clock separation. 

Various applications eventually led us to interface a much higher pc:rformance disk (CalComp 

Trident) as an option. The differences between the two disk controllers are almost entirely in areas 

where the micromachine has sufficient performance to handle some function for the slower disk, but 

not for the faster one. Fot example, although the Alto has sufficient main memory bandwidth to 

handle the Trident (9 Mbits/sec vs. 1.7 Mbits/sec for the Diablo), task wakeup latency (the time 

from when a wakeup is requested to when the task gets control of the micromachine) can be up to 

2 fLs, so multi-word buffering hardware is required in the faster controller. 

4.2.1 Disk sector task 

One micromachine task, called the sector task, is invoked whenever a sector notch on the 

rotating disk pack passes a reference location on the disk drive. There are 12 such notches around 

the disk, and one of them passes the reference location every 3 ms. The sector task can run at low 

priority because its needs for micromachine computation (about 12 fLs) can be satisfied at any time 

in a 100 fLs interval. When the sector task is invoked, it records the final status of the just

completed transfer operation (if there was one) in that operation's disk command block, records any 

requested interrupts in NIW, and checks to see if another command block requires processing. If 

there is no work to dO,the sector task goes to sleep. This permits lower-priority tasks to run until 

another sector notch is encountered. 

If there is new work, the sector task decides whether the disk access machinery is positioned at 

the correct cylinder and sector. If the cylinder is incorrect, a seek operation is initiated, using the 

controller hardware. If both sector and cylinder positions are correct, the data transfer is enabled 

by leaving the necessary state information in R-registers, and commanding the controller to generate 

disk data task wakeup requests. Finally, the sector task sleeps. 

---~---~--~------.~-.----~-
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4.2.2 Disk data task 

The other task, called the disk data task, is invoked at a very high priority during reading (or 

writing) whenever the one-word data buffer in the controller needs emptying (or filling,. 

respectively). This task is awakened about every lO fLs, and transfers a single word in at most 1.7 

fLs (unlike the display task, which transfers two words per wakeup in 1 fLs). Thus during disk 

transfers up to 20% of the micromachine's time is devoted to servicing the disk controller. 

The disk data task is expected to read, check, or write each of three records in a sector: the 

header, the label, and the data. Each record consists of a preamble area written as all 0 bits, a 

synchronization pattern consisting of a single 1 bit, a number of information words, and a checksum 

word. The preamble and synchronization bits allow a tolerance for mechanical and electrical 

misalignment between writing and reading. 

In a typical operation the data task might check the header and label records of a sector, and 

then write its data record. To read or check a record, the Alto waits until the disk head is over the 

preamble to that record, then reads until the sync pattern is recognized, then gets words from the 

disk and writes them into memory or compares them with words fetched from main memory, and 

finally compares the computed checksum against the one read from the disk. To write a record, it 

must write a certain amount of preamble, then a sync pattern, then the data fetched from main 

memory, and finally the computed checksum. 

A small piece of actual microcode for the disk data task will make the preceding description 

concrete. In the microassembly language below, all the clauses between a pair of semicolons (; 

xxx +- yyy, zzz, ... ;) assemble into one microinstruction (see Figure 5). For example, in the 

first line, 

InPreambleWait: 

L +- MinusPreambleRemaining+l, Block; 

MinusPreambleRemaining is an R register (say, 16), so RSEL = MinusPreambleRemaining 

(16), ALUF = Bus+1 (5), BS = ~R (0), Fl = BLOCK [task specific] (3), F2 = NULL (0), LL = Yes (1), 

LT = No (0), and the NEXT field is assigned by the microassembler to point to the next 

microinstruction in sequence. The label In P re amb 1 e W a i t is defined to be the microinstruction 

address chosen for this microinstruction by the microassembler. 

One further general point is that conditional jumps and dispatches are implemented by oRing a 

computed value (usually just 0 or 1, but not always) with the NEXT address being fetched as part of 

the next microinstruction. Conditional clauses are identified by a trailing? For example, 

... , L<O? , ... ; 

" .,GoTo[O:PreambleDone, l:InPreambleWaitJ, ... ; 

The L < O? clause in the first microinstruction will cause a 1 to be oRed with the NEXT field of the 

next microinstruction, if and only if the previous value of the L register is negative. The second 

microinstruction includes a NEXT field pointing to P reamb 1 eDone, and in addition it tells the 
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assembler to locate PreambleDone at an even address and InPreambleWait at the next 

successive odd address, so that PreambleOone OR 1 = InPreambleWait. 

The microcode fragment given below uses several functions to communicate with the hardware 

interface. All of them are task-specific. 

Bloc k (Fl) tells the controller hardware that the microcode task has run, and the wakeup 

request should be removed. 

Oi skBufferWord~ (Fl) loads the one-word output buffer in the disk controller hardware 

from the bus. 

~DataBufferWord (BS) puts the contents of the one-word input buffer in the disk 

controller onto the bus. 

OiskCommandRegister+- (Fl) loads the command register in the controller from the bus. 

The bits in that register then fan out to control several independent conditions in the 

controller hardware. One bit (UseReadCl ock) determines whether the controller bit clock 

is being generated from a crystal oscillator in the controller, or whether it is inferred from 

the data being read from the disk. Another bit (WaitForSyncPattern) determines 

whether the controller should suspend wakeup requests until the arrival of the sync pattern 

from the disk. 

ReadWriteOrCheck? (F2) causes a 2-bit dispatch based on whether the record is to be 

read, written, or checked (compared with memory data). The two bits have earlier been 

placed by the microcode into a special register in the disk controller. 

The code begins with a description of the R registers used: 

The code uses four R registers. although for clarity five names are used: 

MinusPreambleRemaining: a negative count of the number of words of preamble remaining. 

RecordWordCount: the number of words in the record being read or written (e.g., the data record is 
256 words long). 

B u f f e rB 0 t t om: the address of the first word in main memory of the buffer for this record. 

OneBeyondNextBufferWord: a pointer into the main memory buffer where the next word should 
be placed. The pointer is always "one beyond" where the actual store will be done. 

C h e c k sum: a register to accumulate the exclusive OR of all data ~ords read or written in the record. 

As we join the story, the data task has begun "spacing" into a disk record in preparation for reading, writing, 
or checking it. If reading or checking. this means marking time until good data is known to be under the 
read head. If writing. this means writing preamble. 

In this loop the microcode counts through the preamble, one count per data task wakeup. Although no data 
is being transferred, the disk controller is waking up the data task each time the 16-bit buffer is full, so that 
it can count preamble bits. Between wakeups, the data task's micro-program' counter rests pOinting at either 
InPreambleWait or PreambleDone. 

, 
I nPreamb 1 eWa it: 

L ~ MinusPreambleRemaining+l. Block; 
MinusPreambleRemaining +- L. L<D? Task; 
DiskBufferWord +- PreambleConstant, 

GoTo[D: PreambleDone. l:InPreambleWait]; Send more preamble if writing. 
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:\ow the preamble waiting is over. If reading, this means that the head is known to be over a good preamble 
area before the sync pattern. If writing, this means we should now write a sync pattern. 

PreambleDone: 
T ~ RecordWordCount; 
L ~ BufferBottom+T, ReadWriteOrCheck?; 
pneBeyondNextBufferWord ~ L, Block, Set up pointer into buffer. 

GoTo[O: SetupRead, 1: SetupWri te, 2: SetupCheck]; 
SetupCheck: 

Adjust by 1 to make transfer loop exit test more efficient. 
L ~ BufferBottom-l; 
BufferBottom ~ L; 

SetupRead: 
DiskCommandRegister ~ UseReadClockAndWaitForSyncPattern, 

GoTo[SetupChecksum]; 
SetupWrite: 

DataBufferWord ~ SyncPatternConstant; 
SetupChecksum: 

L ~ Sta rt i ng Checks umCon stant, Tas k ; Initialize Checksum register. 

ModifyChecksum: 
Checksum ~ L; 

The data task's micro program counter rests here between transferring words. If we are reading, and if this is 
the first word of the record, then the data task will wait here until a word has been read follOwing the de
serializer's recognition of a sync pattern. Note that the transfer loop transfers data from high to low addresses; 
this simplifies the exit test 

TransferLoop: 
MAR ~ L ~ T ~ OneBeyondNextBufferWord-l; 

Start main memory interface by supplying address to MAR. 

OneBeyondNextBufferWord ~ L, ReadWriteOrCheck?; 
L ~ BufferBottom-T, Compute number of words remaining to transfer. 

Go To[ 0: Read Loop, 1: W r i teLoop, 2: Check Loop ]; Dispatch. 

ReadLoop: 
T ~ Checksum, Block,.L=O?; Check L: Enough words transferred? 
L ~ (MD ~ DataBufferWord) XOR T, Task, 

GoTo[O:ModifyChecksum, l:TransferFinished]; 
Move data word from disk controller to memory, modify checksum. 

WriteLoop: 
T ~ C h e c k s um, B 1 0 c k; Recall L contains number of words to transfer. 

L +- (DataBufferWord +- MD) XOR T, L=O?; 
Move data word from memory to disk controller, modify checksum. 
Check L: enough words transferred? 

Task, GoTo[O:ModifyChecksum, l:TransferFinished]; 

TransferFinished: 
Checksum +- L; 

The task's program counter rests here after sending the last data word to the controller, or reading the last 
data word from the controller. Now we must either send the computed checksum to the controller or compare 
the computed checksum with that read from the controller. 

T +- DataBufferWord +- Checksum, ReadWriteOrCheck?; 
Only writes into outgoing buffer word. 

L +- DataBufferWord-T, Block, 

.----~-.~, "~~~~--------------------.--------
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GoTo[ 0: CheckChecksum, 1: F; n; shRecord, 2: CheckChecksum]; 
ThlS uses the incoming buffer word. 
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'ow if we were reading or checking. we test for correct checksum by checking. whether L is O. etc. 

In the main reading loop, all but one of the microinstructions are executed concurrently with 

the main memory transfer (Le., between MAR .. and MD", which are as close together as they can 

be). This is usually true as well for other high-bandwidth controller microcode loops in the machine. 

Thus the main speed bottleneck in the Alto is shared access to a single memory interface. The 

additional degradation resulting from also sharing a single processor is minimal because so much 

processing is overlapped with memory references. 

ReadWriteOrCheck? is a good example of trading off controller hardware against shared 

processor time, register space, and microcode space. Obviously the same effect could have been 

obtained by dispatching on the value in an R register in the micromachine, or by having completely 

separate micromachine routines for reading, writing, and checking. Usually the decision was made 

to minimize controller hardware. But in this case by introducing a small amount of extra hardware 

(about two res) in the controller, one R-register or about 30 microinstructions were saved. It was 

economical in 1973. but might not be today. 
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5. Communication 

A personal computer provides substantial, predictable service to a single user. Much of the 

service he wants, however, cannot be provided by his machine alone, either because sharing is 

essential to the service or because of cost. Communication with other computers and other users is 

therefore needed. The communication system expands the service available to an individual, by 

allowing several users to share resources. 

Such sharing is advantageous for two reasons. First, it allows several users to access the same 

data. For example, a person who composes a memorandum using text-editing facilities contained 

entirely in his Alto, may wish to distribute copies to several other people. He transmits the data 

representing the memorandum to the Altos of the recipients; each of the recipients can then read it 

on his Alto display. This use of communication is analogous to the use of the telephone or U.S. 

mail. 

Communication can also be used to share resources for economic reasons. Although it is too 

costly to provide a hard-copy raster-scan printer for each Alto, a group of users may share a printer, 

transmitting to the printer the data and control information necessary to print a document. Sharing 

is also economical for high-capacity file storage or for special-purpose processors too expensive to 

replicate for each person. 

At the time the Alto was designed, several computer communication networks such as the ARPA 

network [Kahn] had demonstrated the value of packet-switched networks for sharing resources and 

providing personal communication among research collaborators. A design suited for personal 

computers, however, has objectives rather different from those of a remote computer network such 

as the ARPA net: 

The transmission speed should be high enough that most users will not notice the presence 

of the network. If network bandwidth approximately matches local disk bandwidth, the 

user may not know or care whether a file is retrieved from a local disk or from a remote 

disk. 

The size of a network linking personal computers must not be limited. It is not 

unreasonable to imagine networks linking thousands of personal computers. At the same 

time, just two or three computers can constitute a reasonable network. 

The reliability of the network is extremely important when essential services such as printing 

depend on communication. If a user's personal computer malfunctions, he can take his disk 

cartridge to another one, but a network malfunction severs his access to essential services. 

In addition, many users are inconvenienced when the network fails, but only one when a 

machine fails. 

Personal computers tend to be near to each other and to the services they need, thus 

permitting a local network transmission technique for clusters of machines. 

~--------.. --------------.----
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A design for a communication system must anUclpate the need for standard communication 

protocols in addition to standards for the physical transmission media. The protocols control the 

flow. routing. and interpretation of data in the network. Just as the design of the Alto disk 

controller addresses the needs of a file system. so must the design of a network address the needs of 

communications protocols. However, the Alto was designed at a time when experience with 

protocols was limited: many lessons had been learned from the ARPA protocols, but newer designs 

such as Pup [Boggs et an and TCP [Cerf-Kahn} had yet to emerge. The Alto therefore provides a 

general packet transport system. which has been used for a number of protocol experiments and 

evolutionary designs. 

5.1 The Ethernet local network 

The Ethernet communication system [Metcalfe-Boggs] is the principal means of communication 

between an Alto and other computers. An Ethernet is a broadcast, packet-switched, digital network 

that can connect up to 256 computers, separated by as much as a kilometer, with a 3 Mbitlsec 

channel. Control of the Ether is distributed among the communicating computers to eliminate the 

reliability problems of an active central controller, and to reduce the fixed costs which can make 

small centralized networks uneconomical. 

A standard Alto includes an Ethernet controller and transceiver. As soon as there are two 

Altos within a kilometer of each other, connecting the transceivers together with a coaxial cable 

establishes an Ethernet. Additional Altos and other computers can be connected simply by tapping 

into the cable as it passes by, above a false ceiling or beneath a raised floor. Connections can be 

made and power turned on and off without disturbing network communication. 

An Ethernet is an efficient low-level packet transport mechanism which gives its best efforts to 

delivering packets, but it is not error free. Even when transmitted without an error detected by the 

sender. a packet may not reach its destination without error; thus, packets are delivered only with 

high probability. A hierarchy of layered communication protocols is used to achieve reliable 

transmission on the Ethernet, by requiring receiving processes to acknowledge receipt of correct 

packets and sending processes to retransmit packets whose correct receipt is not acknowledged. 

5.2 The internetwork 

Although the physical size and addressing of the Ethernet are limited, many local networks may 

be connected together into an internetwork. The internetwork is implemented by building gateway 

computers (usually Altos) that connect two or more networks, often using long-haul digital 

communication to connect with gateways on distant local networks. The gateway is responsible for 

routing packets in the internetwork: it receives a packet from a local network, interprets a 

destination address in the packet, and then transmits the packet into another network which will get 

it closer to its ultimate destination. Sometimes packets are forwarded through several gateways 
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before they arrive at the proper local network. As of summer 1979, the Xerox internet provides 

service to several hundred computers on 25 networks interconnected by 20 gateways. 

5.3 Implementation 

The Alto Ethernet controller (Figure 12) contains about 75 MS1 TIL 1(:S- it is slightly larger 

than the disk and display controllers. The transceiver, on the other hand, is much smaller and less 

expensive than either the disk drive or the display monitor. The controller hardware consists of the 

following functions: phase decoder, receiver shift register, FIFO buffer and synchronizing register, 

transmitter shift register, phase encoder, and micromachine interface. The FIFO buffer is shared by 

the transmitter and receiver, so the interface is half-duplex: it can either be transmitting or receiving 

but not both simultaneously. This is not a severe limitation, since the Ether itself is half-duplex. It 

does make hardware checkout more difficult, however, because the controller cannot be looped back 

on itself; also, the software must. make a special check for packets that it send~ to itself. Up to 

three Ethernet interfaces can be attached to an Alto. Unfortunately the tasks cannot share a single 

copy of the microcode, since the micromachine cannot make indexed R-register references. 

The microcode uses one medium-priority task, two R-registers, and about 100 microinstructions. 

The task consumes 16% of the machine in the data transfer loops, since it runs for five cycles (one 

memory reference) every 5.44 JLs (one Ethernet word time), doing all of its bookkeeping while 

waiting for the memory. To reject a packet the address filter requires 13 cycles (2.21 JLs), which 

consumes as much as 20% of the machine in the improbable case of minimum length (2 word) 

back-to-back packets. The rest of the microcode is executed once per packet accepted or 

transmitted, and so consumes a negligible number of cycles. 

The Ethernet task communicates with a program much as the disk and display tasks do. The 

program builds a command block describing the operation to be done. When the Ethernet task 

wakes up, it carries out the operation, and then posts status in the command block and causes an 

interrupt by oRing a word from the command block into N1W. The disk and display have 

p-eriodically occurring events (sector notches and scan line retrace) which cause their tasks to wake 

up and check for commands from the software, but there is no such periodic event for an Ethernet. 

Instead, there is an S-group instruction which the program executes to set a flip flop in the Ethernet 

hardware; this flip flop wakes up the Ethernet task to act on the command block. Disk and display 

commands complete after a finite time, but an Ethernet receiver can be started and not receive a 

packet for days. Hence programs always use interrupts to recognize completion of an operation, 

rather than busy-waiting as many disk drivers do. Finally, Ethernet command blocks are not 

chained, partly because of a shortage of microcode space in the early implementations, and partly 

because it was not then clear how to make use of chaining. 
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Packet address filtering is done by the microcode. When the hardware has accumulated the 

first word of a packet. it wakes up the microcode to check the destination address byte. The 

microcode accepts the packet and copies it into memory if any of the following conditions is met: 

• the destination address in the packet matches the host address field in the command 

block; 

• the destination address is zero (in this case the packet is a broadcast packet, and is 

received by all machines); 

• the host address is zero (in this case the machine is said to be promiscuous, and receives 

all packets). 

Otherwise the microcode tells the hardware to ignore the rest of the current packet, and go to sleep 

until the beginning of the next packet. The address filter takes about 20 microinstructions; done in 

hardware it would take about 8 ICS. 

The flexibility afforded by this filtering scheme has many applications. Any machine can 

substitute for another by using the other machine's address in the host address field. Promiscuity is 

invaluable for debugging protocols, since a machine can peek at all of the packets flowing between 

two others. It is also easy to study the performance of the net by monitoring all the traffic. 

Broadcasts are used to locate resources and to distribute globally useful information. A less 

desirable consequence is that the Ethernet itself provides no security; applications which need secure 

communication must use encryption. 

The choice of an eight bit address has proved to be unfortunate, since it means that a machine 

cannot have a unique hard-wired serial number which is normally used as its host address. Instead, 

each Alto has a station address specified by jumpers on the backplane, which is unique only among 

the machines on the particular Ethernets it happens to be on. 

Two or more Ethernet transmitters collide when they simultaneously decide that the Ether is 

free and begin transmitting. When a transmitter detects collision, it aborts transmission and waits a 

random time interval before trying again, so as not to collide repeatedly. As the load on the net 

increases, a transmitter retries less vigorously, by doubling the mean of its random interval each 

time it participates in a collision. This exponential backoff algorithm is done by the microcode and 

a small amount of hardware. The software zeroes the LOAD location in the Ethernet command 

block each time it issues an output command, and the microcode shifts a one bit into it each time a 

collision happens. The microcode generates a random retransmission interval by masking the LOAD 

location with the real time clock R-register maintained by the timed task, and then waiting for that 

interval by telling the hardware to wake it up each time the timed task wakes up, and decrementing 

the interval register at each wakeup. When the register goes to zero, the microcode again tries to 

transmit. After 16 consecutive collisions the LOAD location overflows, and the microcode gives up 

and posts a failure code in the command block. This algorithm takes about 20 microinstructions; 

done in hardware it would require about 10 ICS. 
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6. A controller for a raster-scanned printer ' 

Tl1e Alto is predominantly a versatile 110 controller: the design emphasizes the needs of high

bandwidth 110 for personal computing, and relegates instruction interpretation to secondary 

importance. One of the objectives of the design is to provide a convenient framework in which to 

build experimental or special-purpose 110 controllers, in addition to those for the standard display, 

keyboard, mouse, disk, and Ethernet. This section illustrates how the resources of the Alto are 

harnessed to a complex task: an interface to a high-speed raster-scanned page printer. The design 

shows how the page-generation algorithm is first analyzed, and then divided into parts that are 

implemented in software, microcode, and hardware. 

The objectives of a printer are very similar to those of the Alto display: several thousand 

characters may appear in arbitrary sizes, rotations, font styles, and positions on the page; text may 

be proportionally spaced; characters may overlap one another (e.g., overstrikes); non-text imagery 

such as lines and curves may appear. Printing quality generally exceeds that of a display by using 

higher resolution - a typical device might print in one second an 8.5 by li inch page defined with 

350 dots/inch (roughly 4000 horizontal scan lines of 3000 dots each). 

These observations suggest that the same techniques used to generate a digital video signal for 

the Alto display be used to drive a printer. The modest average data rate of 12 Mbits/sec means 

that an image of the page could be buffered in Alto memory and read out to generate video, using 

the same sort of controller as the Alto display. The image of the printed page can be created the 

same way as that for a display: using a character table that gives the x and y position and character 

code for each character that appears in the image, and a font table that defines a rectangular bitmap 

pattern for each character, BitBlt is used to OR each character's pattern into the bitmap buffer at the 

proper coordinate position. Unfortunately, this simple approach fails for two reasons: the Alto does 

not have enough memory to buffer a full page image (12 million bits), and the processor cannot 

execute BitBlt fast enough to generate a bitrilap for a moderately complex page in one second. 

These two problems force changes in the image-generation algorithm. After describing the new 

algorithm, we sketch its Alto implementation. 

Because buffering the entire page is impractical, an incremental algorithm must be used to 

generate portions of the image in sequence, using a smaller buffer. The image is divided into bands 

of 16 scan lines each, and the entire page image is generated by creating the image for each band in 

turn. This scheme requires two buffers, each capable of holding the bitmap for a single band: 

while one buffer is being converted into a video signal and sent to the printer, the image of the 

next band is being prepared in the other buffer. 

The incremental approach requires modifications to the image-generation algorithm described 

for a full-page buffer. The problem is to identify those characters that lie wholly or partly in the 

band being generated. Although the entire character table can be scanned to compute, for each 

entry, whether the character lies in the band, it is more efficient to sort the table by the band 

number in which the character begins (i.e., by y coordinate of the topmost scan line), The sorted 
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table allows easy identification of "new characters," those that start within the band being generated. 

Breaking the page image into bands inevitably causes some characters to span two or more 

bands, either because they are more than 16 scan lines high, or because their image on the page 

happens to cross a band boundary. For these characters, the image-generation process is not 

completed when a band is generated; instead, a portion of the character is left over and must be 

continued in the succeeding band (Figure 13). The image-generation algorithm records left-over 

characters in a list that contains sufficient information to continue image generation (BitBlt) in the 

next band. The companion data structures for new and left-over characters are characteristic of 

many incremental image-generation algorithms, such as those for solid polygons and hidden-surface 

images [Newman-Sproull]. The algorithm to generate the image of a band is: 

1) Clear the band buffer to zero. 
2) For each character in the character table for this band: 

2a) Use the character code extracted from the character table to enter the font table 
and find a character bitmap, together with a width and height. 

2b) OR into the band buffer the image of the character, at the specified position. 
2c) If the character's image does not terminate in this band, save a left-over entry, 

specifying the x position of the character, its width, its height (now reduced), and 
a pointer to the beginning of the next scan line of character bitmap information in 
the font table. 

3) For each character in the left-over table formed when generating the previous band: 
3b) Same as step 2b. 
3c) Same as step 2c. 

4) The image in the band buffer is now ready to be converted into a video signal and sent 
to the printer. 

The algorithm was analyzed carefully to design an implementation for the Alto. Table 1 gives 

several properties required of the memories used in the algorithm, obtained by software simulations 

of the printing of typical pages. These simulations lead to a number of design decisions for the 

algorithm and controller. Consider the size of a band: 16 scan lines. The greater the number of 

scan lines in a band, the larger the band buffers, and hence the expense. The smaller the number 

of scan lines, the more frequently the left-over tables must be read and written while generating a 

page. The table shows that a band size of 16 scan lines yields both modest left-over bandwidths 

and inexpensive band buffers. It also shows that the memories required divide into two classes: 

small and fast (band buffers) and large but slow (font. character and left-over tables). This division 

leads to an implementation strategy for the Alto: the main memory will hold the font, character, 

and left-over tables, and the controller will hold the band buffers, together with some image

generation aids. Such a division is feasible only because the Alto micromachine can intimately 

control the image-generation hardware, using character parameters and pattern information read 

from main memory. 
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Figure 13. Schematic diagram of the image-generation process for printing a page. The band 
buffers show a character that does not completely fit in band L It has a "left over" part extending 
into the next band. 
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Table 1 

Size (bits*103) Bandwidth (bits*106/page) 

30 
12.3 
6+ 
12.3 

368+ 2.4+ 
80+ .08+ 
6.4+ .5+ 

Numbers ending in " + " increase roughly linearly with page complexity. 

6.1lmpiementation 

The organization of the printer controller is shown in Figure 14. It is logically divided into twO 

parts that operate concurrently, the video generator and the image generator. The video generator 

reads data from one of the two band buffers, converts it into a video signal, and transmits the signal 

to the printer. As each 16-bit word is read from the buffer, zeroes are written back to clear the 

buffer for subsequent image-generatioI}. When the video generator has emptied a buffer, it- switches 

buffers and begins emptying the other one. 

The image generator portion of the controller composes the image in the buffer that is not 

being sent to the printer, under control of microcode in the printing task. The micromachine sets 

several parameter registers that describe the dimensions and position of a character to be added to 

the band buffer (width, height, x, and y). Then it enters a tight loop, reading the character's bitmap 

pattern from the font table, and passing two 16-bit words to the controller every microsecond. This 

pattern passes through a FIFO and is shifted to align it with the word boundaries of the band buffer. 

After masking to account for the ends of a character, these 16 values are used to enable writing new 

data values into selected bits of a particular band buffer word. An "ink" memory provides the data 

to be written at these posjtions. Thus the character pattern, shifter and mask determine where a 

character appears in the band, while the ink memory determines the video data values, and thus 

allows characters to appear to have texture or halftone patterns. When the interface signals to the 

processor that it is finished processing the current' character, the microcode reads the controller 

status, including the height register, to determine whether the character was completed, or whether a 

left-over entry must be made, and records the left-over entry in Alto memory if necessary. The 

microcode repeats this process for all the characters that appear in the band. When the image for 

the band is completed, the printing task sleeps until the video generator switches buffers, indicating 

that the task must begin generating the image of the next band. 
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The design of the printer controller is extremely economical, because it takes maximum 

advantage of the facilities already available in the standard Alto: substantial memory and a versatile 

micromachine, This approach retains the flexibility to change easily the sizes, fonnats, and contents 

of important structures: the font and character tables. The special hardware helps implement a 

general mechanism for composing page images (BitBlt), a mechanism that places no restrictions on 

the size, position, or content of characters, nor on the number of different character shapes that can 

appear on a page. Indeed, the controller will generate arbitrary video patterns, including lines, 

curves, and halftones. The performance of the system is limited by two constraints: (1) the font 

and character tables must not exceed the size of Alto main memory; and (2) the time available to 

generate a band dictates the number of micromachine cycles available to read character patterns 

from memory and pass them to the controller. 
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Each of several dozen printers in the Xerox research environment is driven by a printer 

controller, plugged into a standard Alto. Although the page-printing task is complex, the special 

hardware is not large (about 300 ICS) because of extensive use of microcode and memory resources 

in the standard Alto. The design illustrates how a page-generation algorithm was analyzed and then 

implemented using appropriate facilities: macroinstruction programs for y sorting, microcode for 

left-over table management and font table references, and special hardware for the "inner loops" of 

image and video generation. 
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7. Applications 

A successful personal computing environment depends not only on economical hardware and 

devices for communicating with humans, but also on software constructed to meet personal 

computing needs. This section surveys the major software systems that have been built, and 

discusses the impact of the local network on the Alto computing environment. 

7.1 Programming environments 

Two kinds of programming environments have developed on the Alto: conventional compiler

based systems, and fully interactive environments. The first conventional environment to be 

constructed is implemented almost exclusively in the BCPL programming language, and includes 

common tools: a compiler, an assembler, a linker, a debugger, an "open" operating system 

[Lampson-Sproull], a command processor, file-manipulation utilities, etc. Subsequently, the Mesa 

programming language was designed and implemented on the Alto [Geschke el an [Mitchell el an. 
Both of these environments have been used extensively to build applications. 

Interactive programming environments emerged to take advantage of the personal nature of the 

Alto. The Smalltalk environment turned the Alto into an "interim Dynabook," a prototype for a 

personal dynamic medium that emphasizes visual and audio communication [Kay-Goldberg] [Kay77) 

[Kay78] [Ingalls). Smalltalk has been used to interact with documents containing text and graphics, 

to build visual animations [Baecker], to synthesize music, and to build a variety of simulations of 

personal interest. 

An implementation of Interlisp [Teitelman78} explored the problem of providing a large 

interactive environment on the Alto [Deutsch]. Although the Alto micromachine was successfully 

adapted to interpret byte-coded Interlisp instructions at reasonably high speeds, the small main 

memory of most Altos at the time (64K) proved to be a crippling performance limitation. 

The various programming envirGnments used on the Alto coexist gracefully by sharing only 

files stored on the local disk, and network protocols for communication among computers. No 

other facilities of the Alto are standardized. This policy allows each environment and each 

application to exploit the hardware in novel ways; for example, it fosters different strategies for 

using the display and interacting with the user. It also allows a language or application to use 

special-purpose microcode to interpret instructions or perform application-specific calculations. The 

policy has a few drawbacks: failure to standardize the use of the display, for example, makes it 

essentially impossible for one Alto to be used as a remote terminal to another one. 

7.2 Personal applications 

Some applications use the Alto as a stand-alone computer, usually making extensive use of the 

display, mouse and keyboard for interaction. The most commonly used applications of the Alto 
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today are the various programs developed for document production: a (text editor that supports a 

wide range of formatting styles and text fonts, and a set of "illustrators" to prepare diagrams using 

geometrical figures such as lines, circles. and curves, or raster images obtained by scanning existing 

documents or by free-hand drawing. Many of the display techniques used are described in 

[Newman-Sproull]; camera-ready copy for that book was produced with Alto document-production 

software. 

Some uses of the Alto support research in computer science within Xerox. The best example is 

a design automation system used to aid designers of digital hardware. Logic drawings are prepared 

with an illustrator, and are then analyzed by a program to determine what integrated circuits are 

pictured in the diagram and how they are connected. Other software then checks loading rules, 

makes wire lists, and drives semi-automatic wiring equipment. The Alto also serves as a console 

computer to simplify debugging or diagnosis of experimental hardware. An umbilical cord connects 

the Alto to the hardware so that it can load registers and memories, issue control commands such as 
/ 

"single step," and read back important internal state. An Alto program presents this information on 

the display, accompanied by symbolic names of the registers or signals in the experimental 

hardware. The display also presents menus of operations, such as "step," that are invoked by 

pointing with the mouse and cursor. In this way, the Alto is used to provide a comfortable user 

interface for an engineer, technician or system programmer working on the hardware. 

7.3 Communication in applications 

No Alto users depend only on the resources available within a single Alto; all use 

communication to extend these services. Even the user of document-production application requires 

communication to obtain hardcopy output at a shared printer or to distribute a document file to 

other users. Alto applications and users depend on a wide variety of services implemented on server 

machines throughout the network: 
• • Printing. An application program running in any Alto may transmit to the printing server 

a description of a document to be printed. The printing server is an Alto that queues 

requests, and later prints the files using the raster printer controller described in Section 6. 

• File storage. File services are provided both to allow sharing of files among users and to 

escape the limitatIons of the local storage available on the standard Alto. The service 

machines have one or more high-performance disks attached, and offer several different 

styles of file access. Some provide a "page level" access [Swinehart et an, some a "file 

transfer" access patterned after the ARPA network file transfer facilities [Crocker et an, and 

some a "transaction access" suitable for implementing a file service that is distributed over 

several machines [Lampson-Sturgis] [Israel et an. 
• Mailboxes. A popular application of the Alto is an electronic mail service. The personal 

machine is used to prepare messages for transmission to other Alto users, and to display 

and retain on the disk messages that have been received. A network mailbox service is 
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provided to hold messages for a user until he wishes to receive them with the mail program. 

'Il1e mailbox service is often implemented within the same computer that provides network 

file storage [Levin-Schroeder]. 

• Timesharing. The Alto can be used as a terminal on the MAXC timesharing system [Fiala]. 

For simple applications, the Alto simulates a conventional video character display. More 

ambitious applications use a "display protocol" to format text and graphics carefully on the 

screen [Sproull]. DLISP, which provides display-oriented access to the Interlisp 

programming environment, is the primary user Of the display protocol [Teitelman77]. 

• Time oj day. A simple but necessary service is to inform Altos of the correct time. A 

time server is conveniently located in the same computer as a communication gateway. 

• Error logging. This service records a log of error information sent to it, and is usually 

operated by hardware and software maintenance groups. Altos that are not in use run a 

diagnostic program that periodically sends error summaries to the logger. The maintenance 

organization examines the log to schedule service calls. 

• Bootstrap. Alto microcode allows the computer to be bootstrap-loaded from either the 

local disk or the Ethernet. An Ethernet bootstrap service accepts a request for an Alto 

program, reads it from a local disk, and sends it over the network to the computer making 

the request. This service was first used to bootstrap the Scavenger program which repairs a 

damaged disk me structure. Many programs are now distributed in this way, reducing the 

demands on local disk storage. The ability to bootstrap diagnostic programs over the 

Ethernet is especially useful to the maintenance staff. 

The services outlined above are implemented on various server machines spread throughout the 

internetwork. Servers can be added or removed straightforwardly as needs grow or shrink. All 

application programs access the services using standardized protocols, which in effect define the 

services that are offered. Standardization is necessary to allow sharing; applications that share a file 

must obey the protocol standards of the service used to store the me. Thus the protocols constitute 

a standardized interface, analogous to the file system on the disk, which is observed by all programs 

in the environment [Boggs et an. 
In addition to standard services, individual applications use the network in special ways. For 

example, the debugger may communicate with an identical debugger running elsewhere in the 

network, essentially passing the user's commands to the remote machine and returning information 

to be displayed. Thus a programmer in California can examine and fix a bug on a machine in New 

York. The Ethernet is used as a performance-analysis tool: the program to be analyzed transmits 

packets that summarize system status or that record the occurrence of a particular event. An 

analysis program running elsewhere in the network records and displays the information [McDaniel]. 

The network is also used to couple programs together so that two people can cooperatively edit and 

illustrate documents in real time, sending digitized voice as well as keystrokes and mouse 

movements through the network. 
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8. Conclusions 

As an experiment in personal computing, the Alto has been very successful. The number of 

Altos in use exceeds the original expectations of its designers by more than an order of magnitude. 

The Alto has led to an entirely new kind of computing environment, because it puts computing 

power near the user, and makes it possible for him to do most of his work without relying on a 

centralized facility. The Alto environment provides a high bandwidth, comfortable user interface, is 

extremely reliable because of its distributed nature, and provides performance that scales linearly 

with cost. One of the Alto's most attractive features is that it does not run faster at night [Morris]. 

A few aspects of the Alto design did not work out well. The limitations on the size of the 

address space and on the amount of real memory have been serious. Although some programming 

systems have been able to take advantage of the extended memory banks, not all Altos have this 

extension, and a great deal of time has been spent fitting standard software that must run on all 

machines into the limited space available. To a great extent., the memory size limitation is due to 

the fact that the system's life has been longer than planned. 

The facilities of the micromachine are not well suited for emulating existing architectures with 

structured opcodes. Fortunately, the virtual machines for which new emulators have been built use 

simple instruction encodings that fit well with the micromachine's dispatch mechanism. The 

emulator for the Mesa machine interprets instructions just as fast as the emulator for BCPL, even 

though the latter has some hardware assistance for decoding, and the former does not. 

The sharing of the micromachine among lIO activities and emulation has been extremely 

successful. The micromachine allows these activities to interact by sharing memory, and provides 

the high memory bandwidth necessary to suppon the high-speed lIO requirements of the personal 

computer. Today, hardware costs are low enough that it is possible to replicate the processor in 

every lIO controller, but if this is done without taking additional steps such as using cache memories 

to decouple the processors from the memory, or using more complex multi-poned memories, shared 

memory access will still limit the system's performance. Since both these alternatives add cost., 

while the multitasking is very inexpensive, we feel that this architecture is still viable today. 

Some of the early decisions in the design of the Alto computing environment worked out very 

well. The arrangement by which all software is standardized at the level of disk files and network 

messages has made it possible to build a wide variety of cooperating software subsystems. The disk 

file system has proven to be extremely reliable, primarily due to the distributed redundancy. 

Although the hardware and software have both had bugs, the reliability as perceived by users has 

been exceptionally high, since files are almost never irretrievably lost. 

The high bandwidth communication provided by the Ethernet has been more valuable than 

anticipated, since we underestimated the importance of servers. The network and network services 

have been the mainstays of the environment, and we feel that a facility with an order of magnitude 

lower bandwidth would have had a qualitatively different effect. 
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