Palo Alto Research Center

Alto: A personal corhputer

By C.P. Thacker, E.M. McCreight,
B.W. Lampson, R.F. Sproull, and D.R. Boggs

XEROX

Alto: A personal computer

by C. P. Thacker, E. M. McCreight, B. W. Lampson,
R. F. Sproull, and D. R. Boggs

CSL-79-11 August 7, 1979

© Copyright 1979 by Xerox Corporation.

Abstract: The Alto is a small computer system designed in early 1973 as an experiment in
personal computing. Its principal characteristics, some of the design choices that led to the
implementation, and some of ‘the applications for which the Alto has been used are
discussed.

This paper will appear in Siewiorek, Bell and Newell, Computer Structures: Readings and
Examples, second edition.

CR Categories: 6.21, 8.2

Key words and phrases: personal computer, graphics, local network

XEROX

PALO ALTO RESEARCH CENTER
3333 Coyote Hill Road / Palo Alto / California 94304

Introduction 1

1. Introduction

During early 1973, the Xerox Palo Alto Research Center designed the Alto éomputer system
("Alto") as an experiment in personal computing, to study how a small, low-cost machine could be
used to replace facilities then provided only by much larger shared systems. During the succeeding
six years, the original Alto underwent several engineering enhancements to increase its memory
capacity and reduce its cost, but the basic capabilities of the system have remained essentially
unchanged. There are now (summer 1979) nearly a thousand Altos in regular use by computer
science researchers, engineers, and secretaries.

The primary goal in the design of the Alto was to provide sufficient computing power, local
storage, and input-output capability to satisfy the computational needs of a single user. The
standard system includes:

An 875 line raster-scanned display.
* A keyboard, "mouse" pointing device with three buttons, and a five-finger keyset.
* A 2.5 Mbyte cartridge disk file.

° An interface to the Ethernet system ("Ethernet”), a 3 Mbit/second communication
facility.

A microprogrammed processor that controls input-output devices and supports
emulators for a number of instruction sets.

* 64K 16-bit words of semiconductor memory, expandable to 256K words.

All of these components with the exception of the user terminal are packaged in a small cabinet
which is an unobtrusive addition to a normal office. The terminal, keyboard, and pointing device
are packaged for desktop use (Figure 1).

The Alto has led to an entirely new computing environment. Many applications devote the
entire machine to interacting with a user and satisfying his needs; examples are document
production and illustration, interactive programming, animation, simulation, and playing music.
These individual applications are supplemented by a large number of services available via
communications; examples are printing service, mailbox services for delivering electronic mail, and
bulk file storage services. The Ethernet has also given rise to applications that use several Altos
concurrently to furnish additional computing power or to allow several people at their machines to
interact with one another.

The principal characteristics of the Alto processor are described in Section 2. Sections 3 to 6
describe input-output controllers for the display, disk, Ethernet, and printer. Section 7 surveys the
environment and applications that grew up for the Alto. Section 8 offers a brief retrospective look
at the design.

2 ALTO: A PERSONAL COMPUTER

Figure 1. The Alto personal computer, showing a user at work with the display, mouse, and keyset.

The Alto processor 3

2. The Alto processor

The major applications envisioned for the Alto were interactive text editing for document and
program preparation, support for the program development process, experimenting with real-time
animation and music generation, and operation of a number of experimental office information
systems. The hardware design was strongly affected by this view of the applications. The design is
biased toward interaction with the user, and away from significant numerical processing; there are
extensive user input-output facilities, but no hardware for arithmetic other than 16-bit integer
addition and subtraction.

The processor is microcoded, which permitted the machine to start out with rather powerful
facilities, and also allows easy expansion as new capabilities are required. The amount of control
store provided has evolved over time as shown in Figure 2. Initially, the machine contained only
1k words, implemented with PROM. The most recent version provides 4K words, of which 1K is
implemented with PROM, and 3K is RAM.

Main Memory Control Memory Processor Memory
Year
Size Technology Size Technology Size Technology
64K 1K x 1 Dynamic 256 x 4 . 16 x4
1973 Parity Metal gate PMOS 1K PROM Schottky bipolar 82 Rregisters - Schottky bipolar
1974 1K PROM P?&”f;iﬁ‘;"e 32 Rregisters 16x4
1K RAM Schottky bipolar 32 Sregisters Schottky bipolar
64K 4K x 1 Dynamic
1975 Error Correction Si gate NMOS
1K x 4 PROMs
2K PROM)
1976 Schottky bipolar
1K RAM RAM as above
256K 16K x.1 Dynamic
1977 Error Correction | Si gate NMOS
1K PROM PROM as above 32 R registers R regs as above
1979 3K RAM AKX TRAMS | g% & ieters 256 x 4
Static NMOS Schottky bipolar

Figure 2. Sizes and technologies used for the principal memories in the Alto.

4 ALTO: A PERSONAL COMPUTER

The micromachine is shared by sixteen fixed priority tasks. The emulator, which interprets
instructions of the user’s program, is the lowest priority task; the remaining tasks are used for the
microcoded portions of input-output controllers and for housekeeping functions. Control of the
micromachine typically switches from one task to another every few microseconds, in response to
wakeup requests generated by the 170 controllers. The emulator task requests a wakeup at all times,
and runs if no higher priority task requires the processor. There is usually no overhead associated
with a task switch, since the microprogram counters (MPCs) for all tasks are stored in a special high
speed RAM, the MPC RAM. The main memory is synchronous with the processor, which controls all
memory requests.

The task switching mechanism provides a way of multiplexing all the system resources, both
processor and memory cycles, among the consumers of these resources. In most small systems with
single-ported memories, the memory is multiplexed among the 170 controllers and the CPU, and
when an 170 controller is accessing the memory, the CPU is idle. In the Alto, the processor is
multiplexed, and multiplexing of the memory is a natural consequence. By sharing the hardware in
this way, it has been possible to provide more capable logical interfaces to the 1/0 devices than are
usually found in small machines, since the 170 controllers have the full processing capability and
temporary ‘storage of the micromachine at their disposal.

The standard Alto contains controllers for the disk, the display, and the Ethernet. The disk
controller uses two tasks, the display and the cursor use a total of four tasks, and the Ethernet uses
one task. In addition to the emulator task, there is a fimed task that is awakened every 38 ps, ang a
Sault task that is awakened whenever a memory error occurs and is responsible for logging the error
and generating an interrupt. The timed task refreshes the main memory, and maintains the real-
time clock and an interval timer accessible from the emulator.

The main memory size of the Alto was initially 64K 16-bit words, implemented with 1K bit
semiconductor RAM chips. As semiconductor technology improved, the memory size was increased,
as shown in Figure 2. The initial version of the machine provided parity checking; later
configurations employ single error correction and double error detection. Memory access time is
850ns (five microinstruction cycles), and either one or two words can be transferred during a single
memory cycle. In machines with more than 64K, access to extended memory is provided via bank
registers accessible to the micromachine; the standard instruction set and 170 controller microcode
make use of the additional memory only in limited ways. The reason for this clumsy arrangement
is that the lifetime of the Alto has been longer than originally anticipated, and the additional
memory was an unplanned addition.

Because the machine was intended for personal use, protection and virtual memory facilities
normally included to support sharing were omitted from the Alto.

The multitasking structure of the processor led to an extremely simple implementation. The
processor is contained on five printed circuit boards, each of which contains approximately 70 small
and medium-scale TTL integrated circuits. Each of the three standard 1/0 controllers occupy a board
with about 60 ICs. The main memory uses 312 chips. '

The Alto processor 5

2.1 Emulators

There are emulators for several instruction sets, including BCPL [Richards], Smallalk [Kay,
Ingalls], Lisp [Deutsch], and Mesa [Mitchell er af]. The BCPL emulator is contained in the PROM
microstore, while the others are loaded into RAM as needed. The BCPL instruction set was chosen
because it is straightforward to implement and because we had previously developed a BCPL
compiler for a similar instruction set. BCPL is a typeless implementation language; it has much in
common with its well-known descendant, C [Ritchie ef all. The language was used extensively to
build Alto software; very little assembly language code has been written for the Alto.

The BCPL instruction set and the virtual machine it provides are summarized in Figure 3.
Instructions are divided into four groups:

M-Group instructions transfer 16-bit words between memory and one of the four
accumulators AC0-AC3. These instructions provide four indexing modes, and one level of
indirection is allowed. The effective address is a 16-bit quantity, allowing access to a 64K
word address space.

J-Group instructions include unconditional and subroutine jumps, and two instructions that
increment and decrement a memory location and test the resulting value for zero. The
effective address for these operations is calculated in the same way as for the M-Group.

A-Group instructions provide register-to-register arithmetic operations, shifts by one or
eight places, and conditional skips based on the result of the operation.

S-Group instructions provide a number of functions that do not fit within the framework
of the first three groups. Instructions are provided for loading, reading, and transferring
control to special microcode in the writeable microstore, operating the real time clock and
interval timers, optimizing BCPL procedure calls, accessing the extended memory, and
maintaining specialized data structures used by the display.

The BCPL emulator provides a vectored interrupt system with 16 interrupt channels. There is
no hardware support for interrupts; they are implemented entirely in microcode. (Note that the
interrupt system is completely separate from the task-switching mechanism; the latter multiplexes
the micromachine, while the former multiplexes the emulator.) When the microcode associated with
an 170 controller wishes to cause an interrupt, it ORS one or more bits into a micromachine register
NIW (New Interrupts Waiting). If the i-th bit of NIW is set, an interrupt on channel i is requested.
At the start of every macroinstruction, NIW is tested; if it is nonzero, and if the corresponding
channel is active, the emulator’s macroprogram counter is saved in a fixed location in main memory
and control is transferred to a location taken from a sixteen word table that starts at a fixed
location. Individual channels are made active by setting bits in another fixed location. There are S-
group instructions to enable and disable the entire interrupt system, and to return control from an
interrupt routine. |

M-Group

ALTO: A PERSONAL COMPUTER

MFunc

AC

¥ L

| X

1 1

1: AC « MEM[EfAd]
2: MEM[EfAd] « AC

Effective Address Calculation:
EfAd ¢ selecton X into:

case0: D

case 1: PC + sign extended D
case 2: AC2 + sign extended D
case 3: AC3 + sign extended D

if | # 0then EfAd « MEM[EfAd]

J-Group
T L] L]] 1 L] 1] L L])
0 0 0| JFunc | X D
- 1 1 1 L I} L 1 L 1 L
0: PC « EfAd (Jump) .
1: Ac3 ¢ PC + 1, PC « EfAd (Jump To Subroutine)
2. MEM[EfAd] « MEM[EfAd] + 1, if MEM[EfAd] = O then Skip
3 MEM[EfAd] « MEM[EfAd] - 1, if MEM[EfAd] = O then Skip
A-Group
T L) L] L L 1 T
1 SrcAC | DestAC AFunc SH (4 NL Skip
1 1 1 1 1 "l 1 I}
Afunc: Shift: Cin ¢ Skip if:
0: DestAc « NOT SrcAc o - 0: Carry 0: Never
1: DestAc « - SrcAc 1. LHS1T 1: 0 1: Always
2: DestAc « SrcAc + 1 22 RSH1 2 1 2. Cresult = 0
3 DestAc ¢ SrcAc 3 Byte 3 Carry 3 Cresult#0
4: DestAc « DestAc + SrcAc Swap 4 Result =0
5. DestAc « DestAc - SrcAc 5. Result #0
6: DestAc « DestAc - SrcAc -1 6. (Result = 0) OR (Cresult = 0)
7: DestAc « DestAc AND SrcAc 7: (Result # 0) AND (Cresult # 0)
S-Group
L) L L] ¥ ¥ 1 1] LI]] L] 1]
0o 1 1 SFunc Argument
Nl il 1 1 | 1 1 1 1 1 - L
Memory
l ToDestAcif NL=0
rcA S ACO
E AC1
L Load if NL =0
E
DestAC__| C AC2
| 7 AC3 | cary |
Carry’
) ¢
S shitler 17bits) |
1 Cresult
~ Result

Y

16

Sk_p__li Skip Sensor l

Figure 3. Summary of the

BCPL instruction set and its virtual machine.

The Alto processor 7

2.2 Input-output

I70 devices may be connected to the Alto in one of three ways, depending on the bandwidth
required by the device and on the degree to which the controller is supported by specialized
microcode. The three methods of connection and the level of the machine used to interface the
hardware are summarized in the matrix of Figure 4.

LOGICAL INTERFACE LEVEL

BCPL or Asm Emulator or Timed Private Task
(Loads&Stores) Task Microcode Microcode
Impact printer
Prom programmer Stitch welder
Paralle! Low speed
170 Port CPU debugger raster scanner
P XY input tablet raster printer
H Cassette Tape
Y
)
|
C
A
L
c Memo Keyboard * Terminal Medium speed
[¢) Bus y Keyset * concentrator raster scanner
: Console computer Modem interface Console computer
E
C
T
|
N Display® Disk*
S Ethernet * Arpanet
o Mouse * 9 Track Tape
rocessor . High speed
Bus Hardware Multiplier raster printer
Audio
Modem interface

* Included in standard Alto

Figure 4. Schematic illustration of input/output attachments used on the Alto.

Device controllers that require significant bandwidth, or exploit the computational facilities of
the micromachine, are connected directly to the processor bus, and use one or more of the sixteen
microcode tasks. The disk, display, and Ethernet controllers, which are part of the standard Alwo,
are interfaced in this way. The controller for a high-speed raster-scanned printer is an example of a
non-standard 170 controller interfaced directly to the processor bus. These devices are described in
detail in later sections. : ‘ '

8 ALTO: A PERSONAL COMPUTER

Processor bus devices have one or more dedicated tasks that provide processing and initiate all
memory references for the device controller; the tasks communicate with programs through fixéd
locations and data structures in main memory, and through interrupts. By convention, the second
page of the address space is reserved for communication with devices of this type. Since there is
only one processor, data structures shared between 1/0 controllers and programs can be interlocked
by simply not allowing task switches in critical sections of device control microcode.

The amount of data buffering in a device controller, its task priority, and the bandwidth of the
device trade off much as they do in systems which have DMA controllers competing for memory
access. The controller must have enough buffering so that the wakeup latency introduced by higher
priority devices will not cause the buffer to over- or underrun before it can obtain service. The
disk, for example, has only one word of buffering (10us at 1.5Mbits/sec), and is therefore - the
highest priority task. The Ethernet requires more bandwidth, but since it has a 16-word buffer, it
can tolerate much greater latency than the disk (87us at 3Mbits/sec), and hence runs at low priority.
The display requires the highest bandwidth but it also has a 16-word buffer, so it can tolerate
slightly more latency than the disk (12.8 us at 20 Mbits/sec), and is therefore between the disk and
Ethernet in priority.

It is also possible to connect a device directly to the processor bus without using a separate
task. The microcode of the timed task, normally used to refresh the memory, may be modified to
operate devices that require periodic service. When this is done, the timed task microcode is run in
the writeable microstore. The mouse, a pointing device that provides relative positioning
information by being rolled over a work surface, is operated by the timed task. At 38 ps intervals,
the mouse is interrogated for changes in position, and two memory locations corresponding to the
mouse x and y coordinates are incremented or decremented when a change occurs. Specialized
devices may also be operated directly by the emulator microcode; a hardware multiplier is an
example of this type of device. An S-group instruction is added in the writeable microstore that
loads the registers of the multiplier from the ACs, initiates the desired operation, and copies the
results back into ACs when the operation terminates.

Devices with less demanding bandwidth requirements, or with computational requirements that
can be satisfied by an emulator program rather than by a microprogram, are interfaced to the
memory bus of the Alto. The advantage of this method is that no special microcode is needed.
Communication between the hardware and a program is done using ordinary memory reference
instructions, as in the PDP-11. The device controller decodes the memory address lines and delivers
or accepts data under control of a read/write signal generated by the processor. The last two 256-
word pages of the address space are reserved by the hardware for this purpose. Since a memory
access requires five microinstruction cycles, these devices cannot transfer data as rapidly as those
connected directly to the processor bus, where the transfer is controlled by the microinstruction and
requires only one cycle. In the standard Alto, the keyboard and keyset are examples of devices
handled in this way.

The Alto processor 9

It is also possible to provide special microcode for devices that interface to the memory bus. A
network gateway that connects 64 300-baud communication lines to the Ethernet has been
implemented in this way. The scanner hardware consists of a single bit of buffering for the output
lines, and level conversion for the input lines. Serialization and deserialization of eight-bit
characters is done by microcode that is a part of the timed task; characters are passed 10 a
macroprogram via queues maintained in main memory by this microcode. The macroprogram
implements the higher level communication protocols.

The standard Alto provides a third method of connecting simple devices, the parallel 1/0 port.
This is a memory bus device, and consists of a single 16-bit register that can be loaded by a store
instruction, and a set of 16 input lines that can be read by a load instruction. The device controller
does not occupy a card slot in the backplane, but is external to the machine, and attaches via a
cable to a standard connector on the back of the machine, which in turn is wired to the memory
control board. A large number of devices have been connected to the Alto through this simple
interface, ‘ncluding low speed impact printers,.@ PROM programmer, a stitchwelding machine for the
fabrication of circuit boards, and several tyﬁeégof low-speed raster printers. Most devices that use
speed-insensitive handshake protocols can be’ interfaced via the parallel 10 port; such devices
require neither specialized hardware nor microcode.

2.3 Details of the micromachine— control

The microinstruction format of the Alto is shown in Figure 5, and the principal data paths and
registers of the micromachine are shown in Figure 6. Each microinstruction specifies:

The source of processor bus data (BS).
* The operation to be performed by the ALU (ALUF).

Two special functions controlled by the F1 and F2 fields.

Optional loading of the T and L registers (LT, LL).

The address of the next microinstruction (NEXT).
All microinstructions require one clock cycle (170ns) for their execution. If a microinstruction
specifies that one or more registers are to be loaded, this happens at the end of the cycle.
The Alto does not-have an incrementing microprogram counter. Instead, each microinstruction
specifies the least significant ten bits of the address of its successor using the NEXT field in the
instruction. This successor address may be modified by the branch logic or by the 1/0 controllers.
There are special functions to switch banks in the microstore, allowing access to the entire 4K
address space. The address of the next microinstruction to be executed by each of the 16 tasks
supported by the micromachine is contained in the 16-word MPC RAM. This RAM is addressed by
the NTASK register, which contains the number of the task that will have control of the processor in
the next cycle. The MPC RAM value for the current task is updated every microinstruction cycle.

10 ALTO: A PERSONAL COMPUTER

Execution of a microinstruction begins when the instruction is loaded into the Microinstruction
Register (MIR) from the control store outputs. At this time, the information on the NEXT bus is
written into the MPC RAM at the location addressed by the NTASK register. This value is the address
of the next instruction; within a short time, it appears at the output of the MPC RAM, the next
instruction is fetched from the control store, and the cycle repeats.

1) L]) T R] 1] 1 1 L] L T 1 L} ¥ T ¥ T 1)
RSEL ALUF BS F1 F2 LL}LT - NEXT
1 1 1 1 L L L 1 L 1 L 1 L L 1 L 1 1 1 1 1
ALU Function Bus Source Function 1 Function 2 3
0: Bus 0 «R o - 0 -
1T 1. Re 1: MAR « 1. Bus=0?
2. BusORT* 2 1 2. Task 2. LLo? ? => Branch condition:
3 BusANDT 3 8 3 Task Specific 3 L=0? Next.9 « Next.9 OR condition
4: BusXORT 4 S« 4 «LLSH1 4: Next « Next OR Bus
5. Bus+ 1* 5 €MD 5 «LRSH1 5. AluCarry?
6. Bus-1* 6. ¢Mouse 6 «LLCYS8 6: MD ¢«
70 Bus+ T 7: «IR[8:15] 7: « Constant 7: « Constant
10: Bus-T 10-17. Task Specific 10-17: Task Specific
11: Bus-T-1

12 Bus + T + 1*
13: Bus + Skip*

14: BusANDT* * =>Tis loaded from ALU
15: BusAND T’ result, not from the Bus
16: notused

17: notused

Figure 5. Alto microinstruction format.

Conditional branches are implemented by ORing one or more bits with the NEXT address value
supplied by the control store. The source of the data to be ORed is usually specified by the F2
field; it may be a single bit, for example the result of the BUS=0 test, or it may be several bits
supplied on the NEXT bus 'by an 170 controller or by specialized logic. When thé value consists of
an n-bit field, a 2"-way branch, or dispatch is done. Because the next instruction is already being
fetched while the instruction is being executed, conditional branches and dispaiches affect not the
address of an instruction’s immediate successor, but the instruction following that one. It is possible
to execute branches in successive instructions, providing this pipelining is taken into account by the
microprogrammer. This branching scheme constrains the placement of instructions in the
microstore, but the constraints are satisfied semi-automatically by the microprogram assembler.

The Alto processor 11

N
NTASK 44 r———————lCTA SK
RSEL[0:4]
BS[0:2
§ 1 PROM , ALUF[0:3]
MPC /1 =~ Control Memory [~ » MIR L
2 1K - 2Kw x 32 £ S0
0 F2[0:3]
RAM
= ControlMemory | ||
Address 1K - 3Kw x 32 ——
Next Address Bus (10 bits)
3 3 N
Priority

Encoder Wakeup Requests (6 free)

Shift

CTASK A 4

110

4
-

RSEL[0:2]

BSEL[0:4]

S R RSEL[3:4]
8x 32w x 16 32w x 16 IR1:2] CDistk | léisptlayl Eéhe;nelt

! Constants R3] ontro ontro ontro
BS[0:2]

Branch/
256w x 16 Dispatch

ALU results 3 Logic

14

. 0 4
1 4 \ 4 Y Processor Bus (16 bits) ﬁ ﬁ A
| =

X

A
Y

P | IR l r Drivers and Parity J
ALUF IR
(0:3] 3 Y Skip | | Carry 1
/ Flag || Flag ¢ u
Data Data
Y Main Memory Memory Bus
LL R
—-)EL l MAR 64K - 256Kw x 16b 1/0 Devices
error corrected
Decode
and Io-i Address P! Address
Control

Figure 6. Alto micromachine structure.

12 ALTO: A PERSONAL COMPUTER

Task switching in the Al is done by changing the value in the NTASK register. As long as the
value in this register does not change, a task will remain in control of the processor. A task gives
up control of the processor by executing a microinstruction containing F1=TASK. This function
loads the NTASK register from the output of a priority encoder whose inputs are the 16 wakeup
request lines, one per task. An 170 controller indicates its need for service from the processor by
asserting the request line associated with its task. If it is the highest priority requester when the
running microprogram executes the TASK function, NTASK will be loaded with its task number; after
a one instruction delay, the new task will acquire the processor. In the microinstruction following a
TASK, a microprogram may not execute a conditional branch, and it must not allow a task switch
when it has state in the L or T registers, since none of the state of a task other than the MPC value is
saved across a task switch. With these exceptions, there is no overhead associated with task
switching.

The conditions that cause 170 controllers to request wakeups are determined by the controller
hardware, and are usually simple—an empty buffer requires data, or a sector pulse has been
received by the disk controller, for example. When the microcode associated with the controller has
processed the request and commanded the controller to remove the wakeup request, the
microprogram then TASKs, relinquishing control of the processor.

By convention, eight of the possible values of the F1 and F2 fields of the microinstruction are
task-specific, that is, they have different meanings depending on which task is running. Each 170
controller can determine when its associated task has control of the processor by decoding the
NTASK lines. When the task associated with a controller is running, the controller decodes the F1
and F2 lines and uses them to control data transfers, to specify branch conditions, or for other
device-specific purposes. This encoding reduces the size of the microinstruction.

The intimate coupling between the micromachine and the 1/0 controllers has proven to be one
of the most powerful features of the Alto. When a new 1/0 device is added, the controller not only
has at its disposal the basic arithmetic and control facilities of the micromachine, but it can also
implement specialized functions controlled by the task-specific function fields of the
microinstruction. This has led to extremely simple hardware in the 1/0 controllers. Most controllers
consist of a small amount of buffering to absorb wakeup latency, registers and interface logic to
implement the electrical protocols of the device, and a small amount of logic to decode the F1 and
F2 lines, generate wakeups, and do whatever high speed housekeeping is required by the device.
Since the processor makes all the memory requests, controllers never manipulate memory addresses,
and the usual DMA hardware found in most minicomputers is eliminated.

It might appear that sharing the processor in this way would result in a significant degradation
in performance, particularly for low priority tasks such as the emulator. This is in fact not the case;
the major bottleneck in the system is the memory. Since most computation can be overlapped with
memory operation, the performance of the Alto compares favorably with other systems employing
single-ported, non-interleaved memory at comparable 170 bandwidths.

The Alto processor 13

2.4 Details of the micromachine— arithmetic

The arithmetic section of the Alto contains the following components:

A 16-bit processor bus, used to transmit data between the subsections of the processor, the
memory, and the 1/0 controllers. The source of bus data is controlled by the BS and the
F1 fields of the instruction.

A bank of 32 16-bit R registers, and eight banks of 32 16-bit S registers. These registers
have slightly different properties, and together constitute the high speed storage of the
processor. As better integrated circuit technology has become available, the number of S
registers has been increased as shown in Figure 2. R and S are addressed by the RSEL
field of the instruction; either R or S (but not both) can be used during a single
instruction. Reading and loading of R and S are controlled by the BS field of the
instruction.

A 16-bit T register. T is loaded when the LT bit is set in the microinstruction. The source
of T data is determined by the ALU function being executed; it is usually the bus, but may
be the output of the ALU. T is one of the inputs of the ALU.

A 16-bit Arithmetic/Logic Unit (ALU). The ALU is implemented with four SN745181 ICs.
These devices can provide 64 arithmetic and logical functions, most of which are useless.
The fourteen most useful functions are selected by the four bit ALUF field of the
microinstruction, which is mapped by a PROM into the control signals required by the
chips.

A 16-bit L register. L is loaded from the ALU output when the LL bit is set in the

microinstruction.

A shifter capable of shifting the data from L left or right by one bit position and
exchanging the two halves of a word. Simple shifts are controlled by the F1 field of the
instruction (F1=4, 5, 6). In the emulator task, these functions may be augmented by the
F2 field to do specialized shifts required by the BCPL instruction set, and to do double-
length shifts for microcoded multiply and divide.

A 16-bit Memory Address Register (MAR), described later.

A 256 word by 16-bit constant memory, implemented with PROMS. This memory is
addressed by the concatenation of the RSEL and BS fields of the instruction; when F1 or
F2=CONSTANT, the normal actions evoked by RSEL and BS are suppressed, and the
selected constant is placed on the bus. Approximately 200 of the 256 available constants
have been used.

An Instruction Register (IR) that holds the current macroinstruction being executed by the
BCPL emulator.

14 ALTO: A PERSONAL COMPUTER

The main memory is synchronous with the processor, which initiates all memory references by
loading MAR with the 16-bit address of a location. During a memory reference, data may be
transferred between the memory and any register connected to the bus, including registers in the 1/0
controllers. The memory can transfer a doubleword quantity during two successive instruction
cycles, as part of a single memory cycle. Using this access method, which was provided to support
high performance peripherals such as the display, the peak memory bandwidth is 32bits/(6*170ns)
= 31.3 Mbits/sec.

The arithmetic section of the Alto contains a small amount of hardware to support the emulator
for the BCPL instruction set. There are special paths to supply part of the R address from the SrcAC
and DestaC fields of IR, logic to dispatch on several fields in IR, and hardware to control the shifter
and maintain the CARRY and SKIP flags. The total amount of specialized hardware is less than ten
I1Cs.

No special hardware has been added to support emulators for other instruction sets. These
usually specify the operation to be performed with a single eight-bit byte, followed by one or two
bytes that supply additional parameters for some of the operations. The standard dispatching
mechanism is used to do an initial 256-way dispatch to the microcode that emulates each
macroinstruction.

The dispatching mechanism has been used for other applications. Although the micromachine
does not support subroutine linkage in the hardware, it has been possible to achieve the same effect
with only a small performance penalty. The calling microcode supplies a small constant as a return
index (typically in T) which is saved and used as a dispatch value to return to the caller when the
subroutine has completed its work. The Mesa emulator implements an eight word operand stack by
dispatching on the value of the stack pointer into several tables of eight microinstructions, each of
which reads or writes a particular R-register.

The parallelism available in the microinstruction format encourages the use of complex control
structures which are often substituted for specialized data handling capabilities; it is usually possible
to do an arithmetic operation, a branch or dispatch, and at least one special function in each
instruction.

User input/output 15

3. User input/output

‘The main goals in the design of the Alto’s user input/output were generality of the facilities
and simplicity of the hardware. We also attached a high value to modeling the capabilities of
existing manual media; after all, these have evolved over many hundreds of years. There are good
reasons for most of their characteristics, and much has been learned about how to use them
effectively. The manual media we chose as models were paper and ink (the display), pointing
devices (the mouse and cursor), and keyboard devices ranging from typewriters to pianos and
organs.

3.1 The display

The most important characteristic of paper and ink is that the ink can be arranged in arbitrarily
chosen patterns on the paper; there are almost no constraints on the size, shape or position of the
ink marks. This flexibility is used in a number of ways:

Characters of many shapes and styles not only represent words, but convey much
important information by variations in size and appearance (italics, boldface, a variety of
styles).

Straight lines and curves make up line drawings ranging in complexity from a simple
business form to an engineering drawing of an automatic transmission.

Textures and shades of gray, and color, are used to organize and highlight information,
and to add a third to the two dimensions of spatial arrangement.

Halftones make it possible to represent natural images which have continuous tones.

Fine-grained positioning in two dimensions produces effects ranging from the simple
(superscripts, marginal notes, multiple columns) to the complex (mathematical formulas,
legends in figures).

The high resolution of ink, combined with the absence of positioning constraints, means
that a large amount of information can be presented on a single page.

In addition to imaging flexibility, paper and ink have several other important properties:
Large sizes of paper can present the spatial relationships of many thousands of objects.

Many sheets of paper can be spread out, so that many pages can be wholly or partially
visible.

Many sheets of paper can be bound together, so that one item from a very large collection
of information can be examined within a small number of seconds.

16 ALTO: A PERSONAL COMPUTER

Only one technique is known for approximating all these properties of paper in a computer-
generated medium: a raster display in which the value of each picture element is independently
stored as an element in a two-dimensional array called a bitmap or frame buffer. If the size of a
picture element is small enough, such a display can approximate the first five properties extremely
well; about 500-1000 binary (black or white) elements per inch are needed for high quality, or 25-
100 million bits for a standard 8.5x11 inch page. Another approach (which we did not pursue) is to
exploit the fact that unlike paper and ink, the display can provide true gray. If each picture
‘element can assume one of 256 intensity values (or a triple of such values for color), almost all
images which are made on paper can be reproduced with many fewer picture elements than are
needed if the elements are binary; about 100-150 elements per inch are now sufficient, or 8-18
million bits for a page.

Even eight million bits of bitmap was more than we could afford in 1973. Furthermore, the
computer display cannot hope to match paper in size, or in the number of pages which can be
visible simultaneously. To make up for this deficiency, and to model page-turning, it is necessary to
alter the image on the screen very rapidly, so that changes in the single screen image can substitute
for changes in where the eye is looking and for the physical motion of paper. As the number of
bits representing the image grows, more processing bandwidth is required to compose it at
acceptable speeds.

Fortunately, surprisingly good images can be made with many fewer bits, if we settle for
images which preserve the recognizable characteristics of paper and ink, rather than insisting on all
the details of image quality. Characters 10 points or larger (these are printer’s points, 72 per inch,
and the characters in this sentence are 10 point) in several distinguishable styles and in boldface or
italic, almost arbitrary line drawings, and dozens of textures are quite comfortable to read when
represented by about 70 binary elements per inch; this resolution is also sufficient for crude but
recognizable characters down to 7 points, and for halftones of similar quality. One page at this
resolution is about half a million bits, or half of the Alto’s one megabit memory.

The display is an interlaced 875 line monitor running at 30 frames/second. There are 808
visible scan lines, and 608 picture elements per line. It is oriented with the long dimension vertical,
and the screen area is almost exactly the same size as a standard sheet of paper (Figure 7).
Refreshing the display demands an average of 15 megabits/second of memory bandwidth. Since the
. average includes considerable time for horizontal and vertical retrace, the peak bandwidth is 20
Mbits/second. The 30 Hz refresh rate results in flicker which most people do not find
objectionable, provided the image does not contain large amounts of detail which appears in only
one of the two interlaced fields. Flicker is reduced by the use of a P40 phosphor in the CRT, rather
than the faster P4 often used; the greater persistence of images which are being moved has not
proved to be a problem.

User input/output 17

Overlapping, to be an effective tool, must
first have all things in the picture roughly
sketched as if they werti trans%z;lrent—as if
' ou could see through them. e objects
OVERLAPPING Zre first drawn as if %hey were made out of
glass. By beginning with {transparent
objects it is easy to see if they have been
correctly drawn. In the finished drawing all
objects will be correctly drawn.

OVERLAP

Figure 7. An example of text and graphics at Alto screen resolution.

18 ALTO: A PERSONAL COMPUTER

3.2 Bitmap representation

A bitmap which can be painted on the display is represented in storage by a contiguous block
of words. A bitmap on the Alto represents a rectangular image, w picture elements wide and A
elements high. For simplicity, w must be a multiple of 16, and one row of w picture elements
corresponds to w/16 contiguous words in the bitmap. As a consequence, two vertically adjacent
elements correspond to the same bit in two words which are w/16 words apart in storage (Figure 8).

The display microcode interprets a chain of display control blocks stored in memory, with its
head at a fixed location. Each block specifies its successor, the number of scan lines it controls, the
left margin (in 16-element units) of the screen area to be painted from the bitmap in storage, the
address and width of the bitmap array, and the polarity, which determines whether zeros in memory
are displayed as white (the normal case) or black. The left and right margins not painted from the
bitmap are filled with zeros: This scheme allows the screen to be divided into horizontal strips,
each with its own bitmap; its advantages and drawbacks are discussed below.

To simulate an 8.5x11" page we use a single control block which covers all 808 visible scan
lines, has no left margin, and is 608 bits (38 words) wide. This is a full screen bitmap; it consumes
about half the main storage of the standard machine, and displaying it consumes about 60% of the
cycles. In return, it can display nearly any image which can appear on a standard sheet of paper.
More restricted images, however, can be displayed more economically. An ordinary text page like
this one, for example, can be divided into horizontal strips. The white space in the margins, in
indentations, and to the right of the last line in each paragraph need not appear in the bitmap. The
leading between the paragraphs, and the margins at top and bottom, can be represented by control
~ blocks specifying a width of zero. For a typical text page these tricks reduce the size of the bitmap
to about 70% of its full size; pages of program listing are reduced by much more. Furthermore,
lines can be inserted or deleted simply by splicing pointers in the control block chain, and parts of
the image can be scrolled up or down by adjusting the number of scan lines cov\ered by one of the
zero-width control blocks, without moving anything in storage.

Unfortunately, these techniques rule out anything except a single column of text in the image,
~ since various parts of the image no longer have any supporting bitmap. Multiple columns (unless
the lines are perfectly aligned), marginal notes, long vertical lines, or windows which do not fill the
screen horizontally are not possible. We have used multiple control blocks heavily in the Alto’s
standard text editor, which includes extensive facilities for using multiple fonts, controlling margins
and leading, justification etc. The editor continuously displays the text in its final formatted form, so
that no separate operations are required to view the final document. In this context the control
block tricks have made it possible to fit the editor into the machine, which we could not have done
using a full-screen bitmap. All the other interesting uses of the display, however, have adopted the
full-screen bitmap so that they could support more general images, and we are convinced that the
cost of memory is no longer high enough to justify giving up this generality.

User input/output 19
[—F— >
DCB head ()
in page 1
Width = 32 Alto: A Personal Computer
LeftMargin=0 »
Height = 150 [.
Bit map A Window A
0
Width=0
LefiMargin=0 -
Height =150 Window
B
-
J/
0
Windows on the display screen
Width =15
LeftMargin = 17
Height = 300 Bit map B
R S —
Display Control Blocks
(DCBs)
—_—
Bit maps .
Window A D)
] | (
HITo! H Farso
2 I || -.]
Y]
Bit map A 3
P 000001000 . . . C
A+32 01100100100000000000000110000011100000000000000000000. . .
™\ A+64 10010101110011000100001001000010010011001100011001100. ..
A+96 10010100100100100100001001000010010100101010100010010. ..

Width =32 A+128 |11110100100100100000001111000011100111101000010010010...
LeftMarg =0 A+160 | 10010100100100100100001001000010000100001000001010010...
Height = 150 A+192 | 10010100010011000100001001000010000011101000110001100...

A+224 | 000. ..
~y
Y

Figure 8. The display data structure and its mapping onto the screen. The top part of the figure

illustrates several control blocks and the corresponding screen windows they control.

The lower

part shows the relation between a bitmap in memory and the image on the screen. Note that the
pattern of 1's in the bitmap corresponds to the pattern of black dots on the screen.

20 ALTO: A PERSONAL COMPUTER

3.3 Composing the image

Because many bits are needed to display an image, we have found the machine’s ordinary data
manipulation instructions inadequate for handling images. It is important to have fast ways of
building up the most common kinds of images and making certain common changes (e.g., moving
or scrolling a window).” For this purpose the Alto has one major microcoded operation called BitBlt
(for bit boundary block transfer), with a surprising number of uses. It works on rectangles within
bitmaps; such a rectangle is defined by the width of the bitmap (which determines the spacing in
storage of vertically adjacent elements), the address of the bit which corresponds to the upper left
corner of the rectangle, and the height and width of the rectangle (in bits). BitBlt takes two such
rectangles, called the source and the destination, and does

destination « F (destination, source)
where F (d, s) can be s (move), d OR s (paint), d XOR s (invert) or d AND s (erase), or any of these
with s complemented. It is also possible to supply a 16x4 rectangle for the source and have it used
repetitively; this is useful for producing uniform textures. The properties of BitBlt, which was
designed by Dan Ingalls, are discussed in more detail in [Newman-Sproull], where it goes under the
name RasterOp.

BitBlt has a large number of applications, among them

Painting characters from a font, which is simply another bitmap, held somewhere in
storage, that contains images of the characters. It is interesting to note that "characters”
can also be used to represent various specialized kinds of graphics, such as the symbols in
hardware logic drawings.

Drawing horizontal and vertical lines (which are just narrow rectangles).
Filling in rectangular areas with textured patterns.

Scrolling an image across a fixed rectangular window on the screen, or moving such a
window around on the screen.

Moving an image onto the screen from a copy elsewhere in storage.

Saving part of the image in memory that is not part of the display bitmap. Later, the
saved image can be copied back to cause it to reappear on the screen.
The Alto also has a specialized operation for painting characters; it is considerably less flexible than
BitBlt, but easier to invoke and more efficient.

Sometimes one would also like fast operations for painting arbitrary lines and curves, and for
filling solid areas bounded by such shapes, but so far we have not found the need for these to be
great. Instead, these requirements are adequately met by the Alto’s ordinary memory reference
instructions, which can be used to randomly access and update the display with complete flexibility.
We have found this to be quite important, and believe that it is a significant advantage of the Alto
architecture over conventional frame-buffer organizations. The ability to reuse part or all of the
bitmap memory for other purposes when a full-screen display is not required has also been very
important; with the decreasing cost of memory this is no longer such a significant consideration.

3.4. Display hardware

User input/output

21

This display is supported by three microcode tasks and some very simple hardware (Figure 9).
Serial video data is clocked by a 50 ns bit clock: everything else is clocked by the machine’s 170 ns
main clock, which is chosen to be an integral submultiple (224) of the display’s line rate
(875*30=26.25 kHz). A 16 word RAM and a one word register implement a FIFO buffer and
synchronizer between the processor bus and the shift register which serializes data for the display.
There is a sync generator with a counter and PROM for horizontal sync and one for vertical sync,
and logic to wake up the data task whenever the FIFO is not full, the line task when horizontal
blanking starts, and the field task when vertical blanking starts. There is also some logic to support
the cursor described in section 3.5.

Processor Bus
FIFO
¥ ¥
I Buffer I I Cursor SR J
Shift Reg
Controlier Status >
CTASK Dispatch
Logic >
F2[0:3] .
F2 Sync,
.- > Control Wakeup »
Decode Signals Request
Logic

Control Block Format:

0 Pointer to next control block or zero if last

1 |Res|Pol Left Margin N Width
2 Bitmap memory address

3 Height

Figure 9. The display controller.

Video to
Display

Next
Address

Wakeup
Request

8 Rregisters
74 Microinstructions
55 MSI TTL ICs

22 ALTO: A PERSONAL COMPUTER

The field task runs 60 times a second, and is responsible for initializing the line task at the
head of the chain of control blocks. It also generates a 60 Hz interrupt. The line task runs every
38 pus; it initializes the left margin width, bitmap address and bitmap width for the data task, and
advances to the next control block if the current one is exhausted. When no control blocks remain,
it goes to sleep until reawakened by the field task. The data task outputs zeros until the left margin
is exhausted, then fetches doublewords from storage and delivers them to the FIFO until the bitmap
width is exhausted, after which it goes to sleep until reawakened by the line task. A doubleword
fetch takes six cycles or 1.05 ps, and the 32 bits are consumed in 1.6 ps, so the data task consumes
two thirds of the machine while data is being displayed (which is 73% of the time, the rest being
spent in retracing).

3.5 Pointing

A user working interactively with images frequently points at parts of the image, to identify the
spot where something should be done, to select a menu item, to indicate the corners of a region,
etc. For this purpose the Alto has a device called a mouse, which fits comfortably under a hand
and can be rolled around on the work surface [English er al]. The mouse is supported on three ball
bearings, and the x and y rotations of one of these bearings are sensed by the Alto. The hardware
senses motion by =+1 increments in each direction (one unit is roughly 1/200 inch), and microcode
running in the timed task uses this information to update a pair of mouse coordinates in storage.
Often it is also nice to be able to draw, and the mouse can do this too, albeit somewhat clumsily.
When drawing is important, a tablet is used, but this device interferes so much with the keyboard
that it is not generally popular.

It is essential to have visual feedback which indicates the mouse position, since there is no
direct visual or tactile connection between the mouse position and anything in the image on the
screen. This feedback is provided by the cursor, which is a special 16x16 bitmap stored at a fixed
place in memory, together with x and y coordinates that control where it is displayed. The cursor
has its own microcode task, which runs after the display’s line task and loads two hardware registers
with the proper cursor data for the current scan line, and the x coordinate at which its first element
should be displayed. The hardware starts shifting out the data when the display reaches the
specified picture element, and it is ORed with the main display data. The connection between the
mouse and the cursor coordinates is established entirely by software, which may, for example,
restrict the cursor to some region of the screen, force it to move on a grid to facilitate lining things
up, or make it "snap” onto sensitive points when it approaches close to them. Much use is made of
the fact that the cursor image, though small (about 1/4" square), is programmable. This turns out
to be extremely valuable, because the user is much more likely to be looking at the cursor than
anywhere else on the screen. A remarkable variety of shapes can be represented on those 256 bits,
and a great deal of important information easily and unintrusively conveyed.

User input/output 23

Another important property of the mouse is the three buttons on its top surface. These allow
the user to specify a number of commands using the same hand with which he is pointing,
especially when the meanings of the buttons are modified by shift keys on the keyboard, or by
taking account of the duration or frequency of clicks. The current state of each button (up or
down) appears as three bits in a special memory location, so that the program is free to attach
meaning to any detail of the user’s interaction with the buttons.

3.6 Keyboard

The Alto has a standard office typewriter keyboard, augmented with a small number (8) of
extra keys. The keyboard appears to the program as four words of memory; each of the bits in
these words reflects the current state of one key (up or down). This allows any key to be used as a
shift key, and as with the mouse, it permits a variety of non-standard interpretations of the keys to
be programmed, ranging from repeating keys to a digital electronic organ manual.

24 ALTO: A PERSONAL COMPUTER

4. Local storage

The Alto has a reasonably powerful and very reliable disk file system. This file system is
implemented on a 2.5 megabyte moving-head removable-media rigid disk drive with which every
Alto is equipped. All Alto software can read and write disk files, which are the usual interface
among Alto software subsystems.

The disk controller consists of one board of special-purpose hardware, and a share of the Alto
micromachine. The disk controller and the file system were designed together, so that the functions
of the controller match the functions of the file system. Thus, certain file system functions are
performed entirely by the disk controller to insure speed or reliability. These functions are easily
implemented because the full power of the Alto processor is available to the controller.

4.1 File system

: An Alto disk pack contains a set of disk files. A disk file is a sequence of bytes, identified by a
serial number unique within the disk pack. The disk controller and the file system software
together implement a set of operations to create, extend, truncate, or delete files, and to read or
write sequences of bytes within a file. A file is implemented as a non-contiguous sequence of fixed-
length pages recorded on the disk pack. FEach page of a file except the last is completely full of
data (Figure 10).

e

wosee |[001 || |[ooz || {[oos || [[o0e 1 {[oos || |[oos |}Heade,
2 # 200000144 145 200000144 145 200000144 145
Je# 0 1 1 0 2 2
bytes 512 512 512 512 500 512 > Label
xtDA 0,0,3 0,06 005 0,02 nil 0,0,7
wiousDA nil 0,04 0.0.1 nil 0,03 0,02
Filename During early 19 - Filename = - of these compo
“RootDir" 73, the Xerox P] “Alto?.txt”] nents Wlth the
alo Alto Resear . ’ [exception of th
Created ch Center desig Created e user terminal
1-Mar-79 ned the Alto co 17-Jun-78 are packaged i
12:15:35 mputer system Sooosoas 13:29:33 o0 a n asmall cabin L
Read ("Alto") as an "RootDir" Read "Alo1.1xt" etwhichis anu Data
17-Jun-79 xperiment in pe 17-Jun-79 nobtrusive addi
15:46:10 rsonal computi 15:46:10 tion to a normal
ng, 10 study ho office. The term
Written Written
17-Jun-79 . . 17-Jun-79 .
13:29:33 . . 13:29:33 .
e
\ J \ J \ J J \ J)
Y Y Yo h Y Y
Leader page of First data page First data page Leader page of Last data page Second data page
file RootDir of Alto1.txt of RootDir file Alto1.txt of RootDir of Alto1.txt

Figure 10. The Alto file system structure.

R

e

Local storage 25

The Alio file system is designed to be reliable. Many file systems have the property that bad
data on a single page may create such confusion that the good data on the rest of the disk is
practically useless. To control the global damage that could result from localized errors, the Alto
file system distributes structural information to each page on the disk. Each page contains a special
record called the label, different from the data record, that says, for example, "I am now serving as
page 17 of file number 34152." Page 0 of a file, the leader page, holds information about the file:
its alphanumeric name, the date of last modification, and so on; actual data begins in page 1. The
distributed structural information recorded in the label (serial number, page number, length) and in
the leader page (name) is the basic file system data structure.

The basic data structure is supplemented by a set of hints, performance-improving assertions
whose truth can easily be verified. Because it is inefficient to scan the entire disk to find the leader
page of a given file, a directory file maintains hints about file locations. If the directory file says that
page 0 of file number 3456 is located at disk address 7890, then before doing anything irreversible
at disk address 7890, the disk controller checks whether the label record at that address admits to
being page 0 of file 3456. To allow rapid access to a sequence of pages, each label records as hints
the disk addresses of the immediately preceding and following pages of the file (Figure 10). If hints
of any sort are found to be erroneous, they can be reconstructed from the distributed structural
information. In fact, one of the most important programs on the Alto is the hint-reconstructing
Scavenger.

The disk controller makes it easy to use hints properly, and to do other common file-system
operations. A disk operation is invoked with a command block, a group of words in main memory
that specify a disk address, a page buffer address in main memory, and the transfer operation to be
performed (Figure 11). The disk controller is activated by putting the address of a command block
into a particular main memory location. The controller performs the requested operation, writes the
final status in the command block, and (if all went well) automatically proceeds to the next
command block in a chain of blocks, linked by pointers. Disk command blocks are designed to be
included in more complex operating system data structures describing pending disk transfers.

File system damage results as often from errant software as from errant hardware. The file
system/disk controller design attempts to minimize damage in two ways. First, each disk command
block is required to contain the seal, a certain exact bit pattern. The disk controller will stop
immediately if it encounters an improper seal. Thus if the disk controller is accidentally activated
on a block of memory that is not a legal disk command block, its seal would probably be improper,
and file system damage would be avoided.

The second way to assure file system integrity is to check the label record before reading or
writing, as mentioned earlier. Many disk controllers in other systems implement a header record for
each page, separate from the data record, that is checked before reading or writing the data record.
This strategy provides protection from failures of seeking or sector counting hardware, but not from
software failures. An Alto disk sector incorporates separate header, label, and data records. The
disk controller checks the header record to be sure the access hardware works, and then checks the

26 ALTO: A PERSONAL COMPUTER

label record to be sure that the file system software works, before reading or writing a data record.

4.2 Disk interface

The disk controller consists of two micromachine tasks, four R-registers, about 150
microinstructions, and 55 MSI TTL ICs (Figure 11). The hardware is modest because it takes
advantage of the computational power available in the micromachine. The hardware does only
what the micromachine cannot do, either because of performance limitations or because remote
sensing or control is involved: cable driving and receiving, data buffering, data serialization and de-
serialization, data encoding, sync pattern detection, and micromachine communication. With the
particular disk drive used on the Alto (Diablo Model 31), the disk controller is responsible for
encoding data into a self-clocking Manchester code during a write operation, but during a read
operation the disk drive itself performs data-clock separation.

Various applications eventually led us to interface a much higher performance disk (CalComp
Trident) as an option. The differences between the two disk controllers are almost entirely in areas
where the micromachine has sufficient performance to handle some function for the slower disk, but
not for the faster one. For example, although the Alto has sufficient main memory bandwidth to
handle the Trident (9 Mbits/sec vs. 1.7 Mbits/sec for the Diablo), task wakeup latency (the time
from when a wakeup is requested to when the task gets control of the micromachine) can be up to
2 ps, so multi-word buffering hardware is required in the faster controller.

4.2.1 Disk sector task

One micromachine task, called the sector task, is invoked Whenever a sector notch on the
rotating disk pack passes a reference location on the disk drive. There are 12 such notches around
the disk, and one of them passes the reference location every 3 ms. The sector task can run at low
priority because its needs for micromachine computation (about 12 us) can be satisfied at any time
in a 100 ps interval. When the sector task is invoked, it records the final status of the just-
completed transfer operation (if there was one) in that operation’s disk command block, records any
requested interrupts in NIW, and checks to see if another command block requires processing. If
there is no work to do, the sector ‘task goes to sleep. This permits lower-priority tasks to run until
another sector notch is encountered.

If there is new work, the sector task decides whether the disk access machinery is positioned at
the correct cylinder and sector. "If the cylinder is incorrect, a seek operation is initiated, using the
controller hardware. If both sector and cylinder positions are correct, the data transfer is enabled
by leaving the necessary state information in R-registers, and commanding the controller to generate
disk data task wakeup requests. . Finally, the sector task sleeps.

Data

Local storage

A -

From disk

Shift Reg

Buffer Command

27

Processor Bus Control
A to Disk
Status Data
to Disk
Status
from Disk Disk and Controller Status -
—
CTASK w»_| Dispatch Next
™ Logic [Address
F2[0:3] -
F1 Timing,
F1/0:3] > ‘ > Control Wakeup > Wakeup
Decode Signals Request Request
Logic
Control Block Format:
0 Pointer to next command block or zero if last 4 R registers
1 Ending status 144 Microinstructions
- 55 MSI TTL ICs
2 Seal Command
3 Header Block memory address
4 Label block memory address
5 Data block memory address
6 No error interrupt bits
7 Error interrupt bits
8 unused
9 Disk address

Figure 11. The disk controller.

28 : ‘ ALTO: A PERSONAL COMPUTER

4.2.2 Disk data 1ask

The other task, called the disk data task, is invoked at a very high priority during reading (or
writing) whenever the one-word data buffer in the controller needs emptying (or filling, .
respectively). This task is awakened about every 10 us, and transfers a single word in at most 1.7
ps (unlike the display task, which transfers two words per wakeup in 1 us). Thus during disk
ransfers up to 20% of the micromachine’s time is devoted to servicing the disk controller.

The disk data task is expected to read, check, or write each of three records in a sector: the
header, the label, and the data. Each record consists of a preamble area written as all 0 bits, a
synchronization pattern consisting of a single 1 bit, a number of information words, and a checksum
word. The preamble and synchronization bits allow a tolerance for mechanical and electrical
misalignment between writing and reading.

In a typical operation the data task might check the header and label records of a sector, and
then write its data record. To read or check a record, the Alto waits until the disk head is over the
preamble to that record, then reads until the sync pattern is recognized, then gets words from the
disk and writes them into fnemory or compares them with words fetched from main memory, and
finally compares the computed checksum against the one read from the disk. To write a record, it
must write a certain amount of preamble, then a sync pattern, then the data fetched from main
memory, and finally the computed checksum.

A small piece of actual microcode for the disk data task will make the preceding description
concrete. In the microassembly language below, all the clauses between a pair of semicolons (;

XXX « yyy, zzz, ... ;) assemble into one microinstruction (see Figure 5). For example, in the
first line,
InPreambleWait:

L « MinusPreamb]eRemainingH,‘ Block;

MinusPreambleRemaining is an R register (say, 16), so RSEL = MinusPreambleRemaining
(16), ALUF = BUS+1 (5), BS = «R (0), F1 = BLOCK [task specific] (3), F2 = NULL (0), LL = Yes (1),
LT = No (0), and the NEXT field is assigned by the microassembler to point to the next
microinstruction in sequence. The label InPreambleWait is defined to be the microinstruction
address chosen for this microinstruction by the microassembler.

‘One further general point is that conditional jumps and dispatches are implemented by ORing a
computed value (usually just 0 or 1, but not always) with the NEXT address being fetched as part of
the next microinstruction. Conditional clauses are identified by a trailing ?. For example,

e, L<0?, .. '
...,GoTo[0:PreambleDone, 1:InPreambleWait],...;
The L<07? clause in the first microinstruction will cause a 1 to be ORed with the NEXT field of the

next microinstruction, if and only if the previous value of the L register is negative. The second
microinstruction includes a NEXT field pointing to PreambleDone, and in addition it tells the

Local storage 29

assembler to locate PreambleDone at an even address and InPreambleWait at the next
successive odd address, so that PreambleDone OR 1 = InPreambleWait.

The microcode fragment given below uses several functions to communicate with the hardware
interface. All of them are task-specific. .

Block (F1) tells the controller hardware that the microcode task has run, and the wakeup
request should be removed.

DiskBufferWorde (F1) loads the one-word output buffer in the disk controller hardware
from the bus.

«DataBufferWord (BS) puts the contents of the one-word input buffer in the disk
controller onto the bus.

DiskCommandRegister« (F1) loads the command register in the controller from the bus.
The bits in that register then fan out to control several independent conditions in the
controller hardware. One bit (UseReadClock) determines whether the controller bit clock
is being generated from a crystal oscillator in the controller, or whether it is inferred from
the data being read from the disk. Another bit (WaitForSyncPattern) determines
whether the controller should suspend wakeup requests until the arrival of the sync pattern
from the disk.

ReadWriteOrCheck? (F2) causes a 2-bit dispatch based on whether the record is to be
read, written, or checked (compared with memory data). The two bits have earlier been
placed by the microcode into a special register in the disk controller,

The code begins with a description of the R registers used:

The code uses four R registers, although for clarity five names are used:
MinusPreambleRemaining: a negative count of the number of words of preamble remaining.

RecordWordCount: the number of words in the record being read or written (e.g., the data record is
256 words long).

BufferBottom: the address of the firt word in main memory of the buffer for this record.

OneBeyondNextBufferWord: a pointer into the main memory buffer where the next word should
be placed. The pointer is always "one beyond" where the actual store will be done.

Checksum: a register to accumulate the exclusive OR of all data words read or written in the record.

As we join the story, the data task has begun “"spacing” into a disk record in preparation for reading, writing,
or checking it. If reading or checking, this means marking time until good data is known to be under the
read head. If writing, this means writing preamble.

In this loop the microcode counts through the preamble, one count per data task wakeup. Although no data
is being transferred, the disk controller is waking up the data task each time the 16-bit buffer is full, so that
it can count preamble bits. Between wakeups, the data task’s micro-program counter rests pointing at either
InPreambleWait or PreambleDone.

InPreambleWait:
L « MinusPreambleRemaining+1l, Block;
MinusPreambleRemaining « L, L<0?, Task;
DiskBufferWord « PreambleConstant,
GoTo[0: PreambleDone, 1:InPreambleWait]; Send more preamble if writing.

30

ALTO: A PERSONAL COMPUTER

Now the preamble waiting is over. If reading, this means that the head is known to be over a good preamble
area before the sync pattern. [f writing, this means we should now write a sync pattern.
PreambleDone:
T « RecordWordCount;
L « BufferBottom+T, ReadWriteOrCheck?;
OneBeyondNextBufferWord ¢« L, Block, Set up pointer into buffer.
GoTo[0:SetupRead, 1:SetupWrite, 2:SetupCheck];
SetupCheck:
Adjust by 1 to make transfer loop exit test more efficient.
L « BufferBottom-1;
BufferBottom « L;

SetupRead:
DiskCommandRegister « UseReadClockAndWaitForSyncPattern,
GoTo[SetupChecksum];

SetupWrite:

DataBufferWord « SyncPatternConstant;
SetupChecksum: '

L « StartingChecksumConstant, Task; Initialize Checksum register
ModifyChecksum:

Checksum « L;

The data task’s micro program counter rests here between transferring words. If we are reading, and if this is
the first word of the record, then the data task will wait here until a word has been read following the de-
serializer’s recognition of a sync pattern. Note that the transfer loop transfers data from high to low addresses;
this simplifies the exit test
TransferLoop:

MAR ¢« L « T « OneBeyondNextBufferWord-1;

Start main memory interface by supplying address to MAR.
OneBeyondNextBufferWord « L, ReadWriteOrCheck?;
L « BufferBottom-T, Compute number of words remaining to transfer.
GoTo[0:ReadLoop, 1:WriteLoop, 2:CheckLoop]; Dispatch.

ReadlLoop:
T « Checksum, Block, L=07?; Check L: Enough words transferred?
L « (MD « DataBufferWord) XOR T, Task,
GoTo[0:ModifyChecksum, 1:TransferFinished];
Move data word from disk controller to memory, modify checksum.
WriteLoop:
T ¢ Checksum, Block; Recall L contains number of words to transfer.
L « (DataBufferWord « MD) XOR T, L=07;
Move data word from memory to disk controller, modify checksum.

- Check L: enough words transferred?
Task, GoTo[0:ModifyChecksum, 1:TransferFinished];

TransferFinished:

Checksum « L;
The task’s program counter rests here after sending the last data word to the controller, or reading the last
data word from the controller. Now we must either send the computed checksum to the controller or compare
the computed checksum with that read from the controller.
T « DataBufferWord ¢ Checksum, ReadWriteOrCheck?;

Only writes into outgoing buffer word.
L.« DataBufferWord-T, Block,

Local storage 31

GoTo[0:CheckChecksum, 1:FinishRecord, 2:CheckChecksum];
This uses the incoming buffer word.
Now if we were reading or checking, we test for correct checksum by checking whether L is 0. etc.

In the main reading loop, all but one of the microinstructions are executed concurrently with
the main memory transfer (i.e., between MAR- and MD«~, which are as close together as they can
be). This is usually true as well for other high-bandwidth controller microcode loops in the machine.
Thus the main speed bottleneck in the Altwo is shared access to a single memory interface. The
additional degradation resulting from also sharing a single processor is minimal because so much
processing is overlapped with memory references.

ReadWriteOrCheck? is a good example of trading off controller hardware against shared
processor time, register space, and microcode space. Obviously the same effect could have been
obtained by dispatching on the value in an R register in the micromachine, or by having completely
separate micromachine routines for reading, writing, and checking. Usually the decision was made
to minimize controller hardware. But in this case by introducing a small amount of extra hardware
(about two ICs) in the controller, one R-register or about 30 microinstructions were saved. It was
economical in 1973, but might not be today.

32 ALTO: A PERSONAL COMPUTER

5. Communication

A personal computer provides' substantial, predictable service to a single user. Much of the
service he wants, however, cannot be provided by his machine alone, either because sharing is
essential to the service or because of cost. Communication with other computers and other users is
therefore needed. The communication system expands the service available to an individual, by
allowing several users to share resources.

Such sharing is advantageous for two reasons. First, it allows several users to access the same
data. For example, a person who composes a memorandum using text-editing facilities contained
entirely in his Alto, may wish to distribute copies to several other people. He transmits the data
representing the memorandum to the Altos of the recipients; each of the recipients can then read it
on his Alto display. This use of communication is analogous to the use of the telephone or U.S.
mail. .

Communication can also be used to share resources for economic reasons. Although it is too
costly to provide a hard-copy raster-scan printer for each Alto, a group of users may share a printer,
transmitting to the printer the data and control information necessary to print a document. Sharing
is also economical for high-capacity file storage or for special-purpose processors too expensive to
replicate for each person. .

At the time the Alto was designed, several computer communication networks such as the ARPA
network [Kahn] had demonstrated the value of packet-switched networks for sharing resources and
providing personal communication among research collaborators. A design suited for personal
computers, however, has objectives rather different from those of a remote computer network such
as the ARPA net:

The transmission speed should be high enough that most users will not notice the presence
of the network. If network bandwidth approximately matches local disk bandwidth, the
user may not know or care whether a file is retrieved from a local disk or from a remote
disk.

The size of a network linking personal computers must not be limited. It is not
unreasonable to imagine networks linking thousands of personal computers. At the same
time, just two or three computers can constitute a reasonable network.

The reliability of the network is extremely important when essential services such as printing
depend on communication. If a user’s personal computer malfunctions, he can take his disk
cartridge to another one, but a network malfunction se