
An Inside Look at MS-DOS
The design decisions behind the popular operating system

Tim Paterson
Seattle Computer Products

1114 Industry Dr.
Seattle, WA 98188

The purpose of a personal com-
puter operating system is to provide
the user with basic control of the
machine. A less obvious function is to
furnish the user with a high-level,
machine-independent interface for
application programs, so that those
programs can run on two dissimilar
machines, despite the differences in
their peripheral hardware. Having
designed an 8086 microprocessor card
for the S-100 bus and not finding an
appropriate disk operating system on
the market, Seattle Computer Prod-
ucts set about designing MS-DOS.
Today MS-DOS is the most widely
used disk operating system for per-
sonal computers based on Intel's 8086
and 8088 microprocessors.

MS-DOS Design Criteria
The primary design requirement of

MS-DOS was CP/M-80 translation
compatibility, meaning that, if an
8080 or Z80 program for CP/M were
translated for the 8086 according to
Intel's published rules , that program
would execute properly under MS-
DOS. Making CP/M-80 translation
compatibility a requirement served to
promote rapid development of 8086
software, which, naturally, Seattle
Computer was interested in. There
was partial success: those software
developers who chose to translate
their CP/M-80 programs found that
they did indeed run under MS-DOS,

often on the first try. Unfortunately,
many of the software developers
Seattle Computer talked to in the
earlier days preferred to simply ig-
nore MS-DOS. Until the IBM Per-
sonal Computer was announced,
these developers felt that CP/M-86
would be the operating system of
8086/8088 computers.

Other concerns crucial to the
design of MS-DOS were speed and ef-
ficiency. Efficiency primarily means
making as much disk space as possi-
ble available for storing data by mini-
mizing waste and overhead. The
problem of speed was attacked three
ways: by minimizing the number of
disk transfers, making the needed
disk transfers happen as quickly as
possible, and reducing the DOS's
"compute time," considered overhead
by an application program. The en-
tire file structure and disk interface
were developed for the greatest speed
and efficiency.

The last design requirement was
that MS-DOS be written in assembly
language. While this characteristic
does help meet the need for speed and
efficiency, the reason for including it
is much more basic. The only 8086
software-development tools available
to Seattle Computer at that time were
an assembler that ran on the Z80
under CP/M and a monitor/de-
bugger that fit into a 2K-byte
EPROM (erasable programmable

read-only memory). Both of these
tools had been developed in house.

MS-DOS Organization
The core of MS-DOS is a device-

independent input/output (I/O) han-
dler, represented on a system disk by
the hidden file MSDOS.SYS. It ac-
cepts requests from application pro-
grams to do high-level I/O, such as
sequential or random access of named
disk files, or communication with
character devices such as the console.
The handler processes these requests
and converts them to a very low level
form that can be handled by the I/O
system. Because MSDOS.SYS is
hardware independent, it is nearly
identical in all MS-DOS versions pro-
vided by manufacturers with their
equipment. Its relative location in
memory is shown in figure 1.

The I/O system is totally device
dependent and is represented on the
disk by the hidden file IO.SYS. It is
normally written by hardware manu-
facturers (who know their equipment
best, anyway) with the notable excep-
tion of IBM, whose I/O system was
written to IBM's specifications by
Microsoft. The tasks required of the
I/O system, such as outputting a
single byte to a character device or
reading a contiguous group of
physical disk sectors into memory,
are as simple as possible.

The command processor furnishes

230 June 1963 © BYTE Publications Inc Circle 122 on Inquiry card.--p-

the standard interface between the
user and MS-DOS and is contained in
the visible file COMMAND.COM.
The processor's purpose is to accept
commands from the console, figure
out what they mean , and execute the
correct sequence of functions to get
the job done. It is really just an or-
dinary application program that does
its work using only the standard MS-
DOS function requests. In fact, it can
be replaced by any other program
that provides the needed user inter-
face.

There are, however, two special
features of the COMMAND file.
First, it sets up all basic error trapping
for either hard-disk errors or the Con-
trol-C abort command. MSDOS.SYS
provides no default error handling
but simply traps through a vector
that must have been previously set.
Setting the trap vector and providing
a suitable error response is up to
COMMAND (or whatever program
might be used to replace it).

COMMAND

PROGRAM

TRANSIENT

MEMORY

COMMAND RESIDENT

MS-DOS

1/0 SYSTEM

INTERRUPT VECTORS

Figure 1: Map of

-TOP OF MEMORY

00400

00000

cludes error trapping, batch-file pro-
cessing , and reloading of the tran-
sient . The transient interprets user
commands; it resides at the high end
of memory where it can be overlaid
with any applications program (some
of which need as much memory as
they can get). This feature is of
limited value in systems with large
main memory, and it need not be im-
itated by programs used as a replace-
ment for COMMAND.

COMMAND provides both a use-
ful set of built-in commands and the
ability to execute program files
located on the disk. Any file ending
with the extensions COM, EXE, or
.BAT can be executed by COM-
MAND simply by typing the first
part of the file name (without exten-
sion). You can normally enter
parameters for these programs on the
command line, as with any of the
built-in commands. Overall, the ef-
fect is to give you a command set that
can be extended almost without limit
just by adding the command as a pro-
gram file on the disk.

The three different extensions

memory
signed by MS-DOS.

areas as as-

The second special feature is that sient sections . The resident, which
COMMAND splits itself into two sits just above MS-DOS in low
pieces , called the resident and tran- memory, is the essential code and in-

t. %I[Cl il
*11PRODUCT DESCRIPTION LIST YOUR COST

UDS 103LP, 300 bps , Modem 145 130
UDS 202LP , 1200 bps , Half Duplex Modem 195 150
LIDS 212LP, 1200 bps , Full Duplex (212A) Modem 445 CALL
U.S. Robotics Auto Dial 212A , 300/1200 Full Duplex Modem 599 475
Incomm Auto Dial 212A , 300/1200 Full Duplex Modem 599 450
Cermetec Auto Dial 212A , 300/1200 Full Duplex Modem 595 495
Microband Auto Dial 212A , 300/1200 Full Duplex Modem 695 495
Rixon Intelligent Modem , 300/1200 (10 Number) 495 CALL
Rixon PC 212A (IBM PC Modem Card) 300 / 1200 495 CALL
Incomm Multi Dial 300/1200 (10 Number) 795 550
U.S. Robotics Password 300 /1200 (Auto Dial) Modem 495 CALL
U.S. Robotics Courier, Osborne , 300/1200 Modem 518 CALL
U.S. Robotics 5.100 , 300/1200 Auto Dial Modem 495 CALL

Visua150 CRT 695 550
Freedom 100 CRT, w/20 F. keys & Editing 595 550
Incomm Remote Station I, w/Integrated 300/1200 Modem 1295 995

Epson MX60 /Graftrax + 650 399
Epson MX80 FT/Graftrax + 700 498
Epson MX100 /Graftrax + 900 700
Epson FX80 750 656
Star Micranics Gemini 10 399 350
Star Micranics Gemini 15 649 548
AJ letter Quality Printer , 30 CPS (KSR) 1450 1250

Inc- AB Switch , 8 Pin 120 84
Inc,,, AB Switch , 25 Pin 159 98
Incomm ABC Switch , 25 Pin 198 138

ID Breakout Box (Blue Box)S 159 140

-70
comm Breakout Box (Bob)In 150 120

Epson , HX-20 .AA /95 CALL
Epson OX -10/256K 2995 CALL
Zenith Z -100 4000 CALL

T-7MM, 7 Pin, 4 Wire, Telephone Cable (Modular Plugs) 10 7
5.975, Modular Double Adapter 7 5
EIA 9/5 , RS 232 . 9 Pin Cable , 5 FT MM /FF/MF 15 12
EIA 25/5, RS 232 , 25 Pin Cable , 25 FT MM /FF/MF 22 14
EIA 50 /5, Centronics Parallel Cable , 5 FT (36 Pin) 30 21
MC 0050/10, Centronics 10 Ft . MM Cable , 36 Pin (10 FT) 38 25
7010/5, IBM PC Printer Cable w /36 Pin 40 22
8010/5 Apple II Printer Cable w /36 Pin 27 18
9010/5, Atari Printer Cable w /36 Pin 30 21

U.S. Robotic, Telpac 79 CALL
Rixon PC Core 1 (IBM PC Software) 69 CALL

ORDER TOLL FREE - 1-S00-323-2666
TOUMAYAN & ASSOCIATES We Welcome Visa, M astercharge:

Checks
Wolf RdN 312-459-8866 iCompa nY P.O.,

Wheeling , IL 60090 •C.O.D. (Add 51 50/Shipment)

ZX FORTH
Simplicity of BASIC with the speed

of machine code!

A complete implementation of the FORTH language for
the ZX81 and TS1000 computer. FORTH 's most dis-
tinctive feature is its flexability. It can turn your computer
into a "word processor". The basic unit is the WORD -
the programmer uses existing WORDS to define his
own which can then be used in further definitions. This
makes program development much faster than other
languages. FORTH is an interactive compiled language
that expands the capabilities of your own ZX81 /TS1000.
Programs run up to 10 times faster than BASIC. The
more programs you have written, the more words,
therefore you can draw on those for further programs.
FORTH is supplied on cassette and is accompanied by
a 56 page users manual and an 8 page editors manual.

Z43 $29.95

Call toll free 1-800 -833-8400
N.Y.(716)874-5510

In Canada call toll free 1 -800-268-3640

GLansTonF'l'y I'rELECTRonIcs
1585 Kenmore Ave., Buffalo , N.Y. 14217

Cheques or money orders . No C.O .D.s. Add shipping
In Canada : 1736 Avenue Rd., Toronto , Ont. M5M 3Y7 Canada : Prices may vary

232 June 1963 © BYTE Publications Inc Circle 452 on Inquiry card . Circle 451 on inquiry card.

allowed on program files represent
different internal file formats.

•.COM files are pure binary pro-
grams that will run in any 8086 mem-
ory segment; in order for this to be
possible, the program and data would
ordinarily have to be entirely in one
64K-byte segment.
•.EXE files include a header with
relocation information so that the
program may use any number of seg-
ments ; all intersegment references are
adjusted at load time to account for
the actual load segment.
•.BAT (batch) files are text files with
commands to be executed in sequence
by COMMAND.

File Structure
Disks are always divided up into

tracks and sectors, as shown in figure
2. To access any particular block of
data, the program first moves to the
correct track, then has you wait while
the spinning disk moves the correct
sector under the head.

A somewhat more abstract view of
disks was taken in developing MS-
DOS. MS-DOS views the disk, not in
terms of tracks and sectors, but as a
continuous array of n logical sectors,
numbered from 0 to n -1. Figure 2
shows the usual method of number-
ing the logical sectors. Logical sector
0 is the first sector of the outermost
track; the rest of the track (and the
next, etc.) is numbered sequentially.
Logical sector n-1 is the last sector
on the innermost track.

The mapping of logical sectors to
physical track and sector is done by
the hardware-dependent I/O System
and is completely transparent to the

Logical
Sector

Numbers Use

0 Reserved for bootstrap
loader

1-6 FAT 1 file allocation
7-12 FAT 2 tables (FATS)

13-29 Directory

30-2001 Data

Table 1: Map of disk areas on an
8-inch single-sided, single-density flop-
py disk.

Figure 2 : Placement of disk sectors in IBM Personal Computer (single-sided) format.

MS-DOS file system. Any other
method may be used, and MS-DOS
wouldn't know the difference. Hav-
ing a standard mapping, however, is
essential for interchanging disks be-
tween computer systems with dif-
ferent peripheral hardware.

As shown in table 1, the MS-DOS
file system divides the linear array of
logical sectors into four groups. The
first of these is the reserved area,
whose purpose is to hold the boot-

BYTE
LOCATION

0

8

16

24

strap loader . Because the loader is
usually very simple, only one sector
is normally reserved.

The FAT (file allocation table), a
map of how space is distributed
among all files on the disk, comes
next . Because it is so important, two
copies are usually kept side by side. If
one copy cannot be read because of a
failure in the medium , the second will
be used.

The directory follows the FAT.

0 1 2 3 4 5 6 7

NAME

ATTRI-
EXTENSION BUTES ZEROS

ZEROS TIME

DATE POINTER SIZE IN BYTES
TO FAT

Figure 3 : Arrangement of bytes in disk directory entry.

234 June 1983 © BYTE Publications Inc

Logical Allocation Unit
Sector Number

Numbers

30-33 2 (first allocation
unit)

34-37 3
38-41 4
42-45 5

1998 • 2001 494

Table 2 : Allocation unit numbering for
the 8-inch single-density format. To
compute the logical sector number of
the first sector in an allocation unit,
you use the following equation: sector
number = 4 X allocation unit number
+ 22.

LOGICAL
SECTOR
NUMBER

38

39

40

FILE DATA

PARTIALLY

UNUSED Il
SECTOR -

41

42

43

44

45

46

47

COMPLETELY
UNUSED

SECTORS

48

49

ALLOCATION
UNIT 4

ALLOCATION
UNIT 5

ALLOCATION
UNIT 6

Figure 4 : Assignment of logical sectors to

allocation units. Note that, in the file
shown, more than two sectors are wasted

because they are in an unused part of the
last allocation unit.

Each file on the disk has one 32-byte
entry in the directory, which includes
the file name, size , date and time of
last write, and special attributes. Each
entry also has a pointer to a place in
the FAT that tells where to find the
data in the file. Figure 3 shows the
layout of a directory entry.

The rest of the disk is the data area.
It is divided into many small, equal-
sized areas called allocation units.
Each unit may have 1, 2, 4, 8, 16, 32,

64, or 128 logical sectors, but the
number is fixed for a given disk for-
mat. Allocation units are numbered
sequentially. The numbering starts
with 2; the first two numbers, 0 and
1, are reserved. Table 2 shows this
numbering system applied to the
8-inch single-density disk format.

The allocation unit is the smallest
unit of space MS-DOS can keep track
of. The amount of space used on the
disk for each file is some whole num-
ber of allocation units. Even if the file
is only 1 byte long, an entire unit will
be dedicated to it.

For example, the standard format
for 8-inch single-density disks uses
four 128-byte sectors per allocation
unit. When a new file is first created,
no space is allocated, but an entry is
made in the directory. Then when the
first byte is written to the file, one
allocation unit (four sectors) is as-
signed to the file from the available
free space. As each succeeding byte is
written, the size of the file is kept up-
dated to the exact byte, but no more
space is allocated until those first four
sectors are completely full. Then to
write 1 byte more than those four sec-
tors worth, another four-sector allo-
cation unit is taken from free space
and assigned to the file.

When writing stops, the last alloca-
tion unit will be filled by some ran-
dom amount of data (figure 4). The
unused space in the last allocation
unit is wasted and can never be used
as long as the file remains unchanged
on the disk. This wasted space is
called internal fragmentation,
because it is part of the space
allocated to the file but is an unusable
fragment. On the average, the last
allocation unit (regardless of size) will
be half filled and, therefore, half
wasted. Because each file wastes an
average of one-half an allocation
unit, the total amount of space
wasted on a disk due to internal frag-
mentation is the number of files times
one-half the allocation unit size.

The phenomenon called external
fragmentation occurs when a piece of
data space is unallocated yet remains
unused because it is too small. This
cannot happen in the MS-DOS file
system because MS-DOS does not re-
quire files to be allocated contiguous-

ly. It is, however, present in more
primitive systems, such as the UCSD
p-System.

It would certainly seem desirable to
minimize internal fragmentation by
making the allocation unit as small as
possible-always one sector, for ex-
ample. However, for any given disk
size , the smaller the unit, the more
there must be. Keeping track of all
those units can get to be a problem.
Specifically, the amount of space re-
quired in the file allocation table
would be quite large if there were too
many small allocation units. For
every unit, 1.5 bytes are required in
the FAT; there are normally two
FATs on the disk, each of which is

rounded up to a whole number of sec-
tors.

Now take a standard 8-inch single-
density floppy disk that has 2002 sec-
tors of 128 bytes. To minimize inter-
nal fragmentation , choose the small-
est possible allocation-unit size of one
sector . Two thousand allocation units
will require 3000 bytes (24 sectors)
per FAT, or 48 sectors for two FATS.
If the average file size is 16K bytes
(128 sectors), the disk will be full
when there are 16 files on it. Waste
due to internal fragmentation would
be

16 files X 64 bytes per file =
1024 bytes (8 sectors)

Far more space is occupied by the
FATs on the disk than is wasted by
internal fragmentation!

To provide maximum usable data
space on the disk, both internal frag-
mentation and FAT size must be con-
sidered because both consume data
area . The standard MS-DOS format
for 8-inch single-density disks strikes
a balance by using four sectors per
allocation unit. Two sectors per unit
would have been just as good (assum-
ing a 16K-byte average file size), but
there is another factor that always
favors smaller FATs and larger allo-
cation units: the entire FAT is kept in
main memory at all times.

The file allocation table contains all
information regarding which alloca-
tion units are part of which file. Thus
by keeping it in main memory, any
file can be accessed either sequentially

236 June 1983 © BYTE Publications Inc

(5a)

DIRECTORY

ENTRY
RESERVED 0
ENTRIES 1

33

4

-s
6

7

8

9

10

11

FILE
ALLOCATION
TABLE

7

9
-1

1633
8

10 10

1

22

(5b)

FF FF FF 07 90 00 FF 6F

00 03 80 00 FF AF 00 FF

6F 01

Figure 5: Finding data via the directory

and the file allocation table. Figure 5a

shows how pointers are used to direct the

operating system to the sequential parts of

a file. The data stored in the sample file-

allocation table is displayed in hexadeci-

mal in figure 5b.

or randomly without going to disk
except for the data access itself.
Schemes used in other operating sys-
tems (including CP/M and Unix) may
require one or more disk reads simply
to find out where the data is, par-
ticularly with a random access. In an
application such as a database in-
quiry, where frequent random access
is the rule, this can easily make a 2 to
1 difference in performance.

How the FAT Works
The directory entry for each file

has one allocation unit number in it:
the number of the first unit in the file.
If, as in the previous example, an
allocation unit consists of four sectors
of 128 bytes each, then just by look-
ing at the directory you know where
to find the first 512 bytes of the file. If
the file is larger than this, you go to
the FAT.

The FAT is a one-dimensional ar-
ray of allocation unit numbers. As
with any array, a given element is
found with a numeric index. The
numbers used as indexes into the FAT

are also allocation unit numbers.
Think of the FAT as a map, or trans-
lation table, that takes an allocation
unit number as input and returns a
different allocation unit number as
output. The input can be any unit
that is part of a file; the number
returned is the next sequential unit of
that file.

Let's look at the example in figure
5a. Suppose that the directory entry
for a file specifies allocation unit
number 5 as the first of the file. This
locates the first four logical sectors
(512 bytes). To find the next alloca-
tion unit of the file, look at entry 5 in
the file allocation table. The 6 there
tells you two things: first, the next
four logical sectors of the file are in
allocation unit number 6; and second,
to find the unit after that, look at
FAT entry number 6.

This process is repeated as you
locate each allocation unit in the file.
After number 6 comes number 3, then
number 9, then number 10. In each
case, the allocation unit number
returned by the FAT tells you both

I RS.TEL•IARtDRI ,VE
.1̂ ^ A SOLID ST̂ SK EM+TOR

1

Save valuable time!
5 to 5 0 times faster

performance than floppy disks
and Winchester drives

SAVE MONEY!
Increase your
computer 's productivity n Visa and Master Card accepted. '^^ ^nv

noIC plus tax (where applicable) and shipping

PION'S INTERSTELLAR DRIVE is designed for use with a
family of interfaces and software packages. Currently avail-
able are interfaces for IBM, 5100, TRS80, Apple, SS50, and
most Z80 uP, and software for most popular operating systems.
Additional interfaces are continually being developed for the
most popular computers.

Basic Price for 256KB unit [includes interface and software]

The INTERSTELLAR DRIVE is a high performance
data storage subsystem with independent power PION ,INC . Tel.(6171923-8009

supply, battery backup, and error detection. It has 101 R Walnut St .,Watertown, MA 02172
256KB to I Megabyte of solid state memory integrated TRS80 trademark of Tandy Corp. Apple trademark of Apple Computers

to perform with your operating system. Interstellar Drive trademark of PION, Inc.

VISA

238 June 1983 © BYTE Publications Inc Circle 304 on inquiry card.

Circle 56 on inquiry card.

CARTRIDGE RIBBONS FOR

APPLE PRINTERS

NEC 8023A

C. ITOH PROWRITER

19.95 E. 1107 . 46 .0,
.

LABEL
SPECIAL

$2099/ K
5)

1 ACROSS 3 • 1516 CONTINUOUS LABELS

ii

CARTRIDGE RIBBONS FOR

EPSON
MX-80 MX-100

S6.SEA S11. 5EA

586."EA 5129.06DOZ

MAXELL
DISKETTES

5's" SINGLE SIDE
DUAL DENSITY

MD-1

$29.91°(r

DUAL SPOOL RIBBONS FOR

OKIDATA
PRINTERS

80, 82, 83 EA
92, 93 S2.7

DOZ

529.92

84 55.99 564.69

INNOVATIVE
CONCEPTS

FLIP'N'FILE
DISC STORAGE BOX

HOLDS UP TO 60 DISKETTES

51/4 " 8"

S24.95EA
$29 n ^JEA

COMPLETE LINE OF OTHER RIBBONS AVAILABLE, PLEASE CALL

ALL ABOVE PRICES INCLUDE SHIPPING
4

Check-Mat^
5 1 DIAUTO DR. § P.O . BOX 103 ws

RANDOLPH, MA 02368
TOLL FREE 800-343-7706 IN MASS 617-963-7694

WE ACCEPT MASTER CARD & VISA
MASS. RESIDENTS ADD 5% SALES TAX

PHONES OPEN 9AM-7PM EASTERN TIME

L a

for any wtord'or
phrase. Any portion of the
Bible can be printed or
displayed . Create your own
library of research materials
or use ours, called TOPICS:
TOPICS contains cross-reference indexes on over 200
of the primary subjects discussed in Scripture.

Bible Research Systems applies computer technology
to personal study of the Scriptures.

TOPICS
$49.95

Bible Research Systems
9415 Burnet, Suite 208

Austin, TX 78758
(512) 835-7981

APPLE 1+, IBM.PC, TESSO4i1 o, CP/M R ` {Trademark mF APPLE,

THE WORD
processor

$199.95

where the data is (i.e., in which unit)
and where to look in the FAT for the
next allocation unit number.

If you followed the example all the
way through, you should have no-
ticed that entry 10 in the FAT con-
tains a -1. This, as you might have
guessed, is the end-of-file mark. Allo-
cation unit number 10 is last in the
file, so its entry contains this special
flag. (Another special value in the
FAT is 0, which marks a free alloca-
tion unit.)

Now you know that this file oc-
cupies five allocation units, numbers
5, 6, 3, 9, and 10 in order. The file
could be extended by finding any free
unit, say 27, putting its number in en-
try 10 (where the -1 is now), and
marking it with the -1 for end of file.
That is, entry 10 in the FAT will con-
tain 27, and entry 27 will contain -1.
This demonstrates how you can ex-
tend any file at will and that you can
use any free space on the disk when
needed, without regard to its physical
location.

If you ever want to look at a real
FAT, there's one more thing you'll
need to know. Each FAT entry is 12
bits (1.5 bytes) long. These entries are
packed together, so two of them fit in
3 bytes. From a programming view-
point, you would look up an entry in
the FAT this way: Multiply the entry
number by 11/2, truncating it to an in-
teger if necessary. Fetch the 16-bit
word at that location in the FAT. If
the original entry number was odd
(so that truncation was necessary in
the first step), shift the word right 4
bits; the lowest 12 bits of the word is
the contents of the FAT entry. Read-
ing a FAT from a hexadecimal dump
isn't nearly as simplel Figure 5b
shows the hexadecimal version of the
sample FAT I've been using.

File System in Action
To put all this in perspective, you

need to look at how MS-DOS handles
a file-transfer request from an appli-
cation program. With MS-DOS, ap-
plication programs treat files as if
they were divided into logical rec-
ords. The size of the logical record is
entirely dependent on the application
and may range from 1 byte to 65,535
bytes. It is not a permanent feature of

242 June 1983 © BYTE Publications Inc Circle 43 on inquiry card.

(6a)

(6b)

byte position 1200

128 b r-^-
tes = 9, remainder 48

sector

Therefore, first byte to transfer is sector 9, byte 48

128 - 48 = 80 bytes to transfer in first sector
1200 - 80 = 1120 bytes left after first sector

1120 bytes =
128 bps 8, remainder 96

sector

Therefore, transfer 8 whole sectors, then 96 bytes of last sector

9 sectors
4 sectors

allocation unit

= 2, remainder 1

Therefore, first sector to transfer is allocation unit 2, sector 1.

Figure 6 : Calculating physical, byte-level operations from logical definitions. The pro-
cess outlined in figure 6a shows how the amount of data is calculated in physical terms.
The actual position of data on the disk is computed in figure 6b.

a file but in fact may vary from one
file-transfer request to the next. The
logical record size currently being
used is passed to MS-DOS for each
transfer made. It is, of course, com-
pletely independent of the physical
sector size the disk uses.

To read a file, an application pro-
gram passes to MS-DOS the size of a
logical record, the first logical record
to read, and the number of sequential
logical records to read. Let's follow
an example of how MS-DOS uses this
information. Assume the application
program is using 80-byte records and
is set up to read a file 15 records at a
time. Let's pick things up on its sec-
ond read, that is, after it has already
taken the first 15 records and is about
to read the second 15. The request
will be for an 80-byte record, the first
record is number 15, and you want to
read 15 records. Now pretend you're
MS-DOS and analyze this request.

You immediately convert the re-
quest into byte-level operations. First
multiply the logical record size by the
record number, to get the byte posi-
tion to start reading (80 X 15 =
1200). Then multiply the record size
by the number of records, to get the

number of bytes to transfer (also
1200).

Next, these numbers must be put in
terms of physical disk sectors. This
requires some divisions and subtrac-
tions involving the physical sector
size and results in the breakdown of
the transfer into three distinct pieces:
(1) the position in the file of the first
physical sector and the first byte
within that sector to be transferred,
(2) the number of whole sectors to
transfer after the first (partial) sector,
and (3) the number of bytes of the last
(partial) sector to be transferred. The
calculations and their results are
shown in figure 6a. It is quite com-
mon for one or two of these pieces to
be of length 0, in which case some of
the following steps are not per-
formed.

At this point, there is still no hint as
to where the data will actually be
found on the disk. You know that
you want the tenth sector of the file
(sector 9 because you start counting
with 0), but you're not yet ready to
check with the FAT to see where it is.
The sector position in the file must be
broken into two new numbers: the
allocation unit position in the file and

the sector within the allocation unit.
For this example with single-density
8-inch disks (four sectors per alloca-
tion unit), this would be the third unit
from the start of the file and the sec-
ond sector within the unit (figure 6b).

What you need to do now is skip
through the FAT to the third alloca-
tion unit in the file. If your file is the
same one shown in figure 5, then
from the directory entry you learn
that the first unit is number 5. Look-
ing at entry 5 of the FAT, you see the
second unit is number 6. And finally,
from entry 6 of the FAT, you find the
third unit of the file, number 3. Table
2 reminds you that allocation unit
number 3 is made up of physical sec-
tors 34, 35, 36, and 37; therefore,
physical sector 35 is what you are
looking for.

Now the disk reads begin. Physical
sector 35, only part of which is need-
ed, is read into the single buffer kept
in MS-DOS solely for this purpose.
Then that part of the sector that is
needed is moved as a block into the
place requested by the application
program.

Next, the whole sectors are read.
MS-DOS looks ahead in the FAT to
see if the allocation units to be trans-
ferred are consecutive. If so, they are
combined into a single multiple-
sector I/O system transfer request,
which allows the I/O system to op-
timize the transfer. This is the pri-
mary reason why MS-DOS disks do
not ordinarily use any form of sector
interleaving: a well-written I/O sys-
tem will be able to transfer con-
secutive disk sectors if told to do it in
a single request. The overhead of
making the request, however, would
often be too great to transfer con-
secutive sectors if it were done on a
sector-by-sector basis.

Back to the example. MS-DOS will
request that the I/O system read sec-
tors 36 and 37 directly into the mem-
ory location called for by the applica-
tion. Then, noting that allocation
units 9 and 10 are consecutive, the
corresponding sectors 58, 59, 60, and
61 from unit 9 and sectors 62 and 63
from unit 10 will be read by the I/O
system in a single request. This com-
pletes the transfer of the eight whole
sectors.

244 June 1983 © BYTE Publications Inc

Known variously as Seattle Com-
puter 86-DOS, IBM Personal Com-
puter DOS, and Zenith Z-DOS, MS-

DOS was developed by Seattle Com-
puter Products for its 8086-based com-
puter system. The MS-DOS history is
intertwined with the general develop-
ment of software for 8086-based com-
puters.

In May 1979, Seattle Computer
made the first prototype of its 8086

microprocessor card for the S-100 bus.

There were brief discussions with
Digital Research about using one of
Seattle Computer's prototypes to aid in
developing CP/M-86, which was to be

ready "soon." Although Seattle Com-

puter was considering using CP/M-86
when it became available (expected no
later than the end of 1979), there were

only two working prototypes of the

8086 processor card, and it was felt

that both were needed in house. There-

fore, there wasn't one free for Digital
Research.

Microsoft had already started a

strong 8086 software-development
program. The firm was ready to try the

8086 version of Stand-Alone Disk
BASIC, which is a version of its BASIC

interpreter with a built-in operating
system. During the last two weeks of
May 1979, this BASIC was made com-
pletely functional using the hardware

To finish the job, sector number 64
is read into the internal MS-DOS sec-
tor buffer. Its first 96 bytes are moved
to the application program's area.

The Sector Buffer
This example shows the internal

MS-DOS sector buffer being used in a
very simple way. In reality, MS-DOS
would normally perform the disk
read in the example more efficiently
than described here due to its opti-
mized buffer handling. By keeping
track of the contents of the buffer,
disk accesses are minimized. The
resulting speed improvement can be
dramatic particularly when the re-
quested transfer size is small (a frac-
tion of a sector).

In the example, I assumed the ap-
plication program was sequentially
reading 15-record chunks (at 80 bytes
per record) and had already com-

A Short History of MS-DOS

that Seattle Computer provided for

Microsoft. Seattle Computer Products
displayed the complete package (8086
running disk BASIC) in New York the
first week of June at the 1979 National
Computer Conference. (This was the
first-ever public display of an 8086
BASIC and of an 8086 processor card

for the S-100 bus.)
Seattle Computer shipped its first

8086 cards in November 1979, with
Stand-Alone Disk BASIC as the only
software to run on it . The months
rolled by, and CP/M-86 was nowhere
in sight. Finally, in April 1980, Seat-

tle decided to create its own DOS. This
decision resulted just as much from
concern about CP/M's shortcomings
as from the urgent need for a general-
purpose operating system.

The first versions of the operating
system , called QDOS 0.10, were
shipped in August 1980. QDOS stood

for Quick and Dirty Operating System
because it was thrown together in such
a hurry (two man-months), but it

worked surprisingly well. It had all the
basic utilities for assembly- language
development except an editor. One
week later, Seattle Computer had
created an operating system with an
editor, an absurdity known as EDLIN
(editor of lines). A primitive line-
oriented system, it was supposed to

pleted the first such read. This would
mean that sector 35 (the first one read
in this example) would already be in
the sector buffer because its first 48
bytes were needed for the previous

The presence of only
one sector buffer in MS-

DOS is a design
inadequacy that is
difficult to defend.

read. MS-DOS would not reread this
sector but instead would simply copy
the remaining 80 bytes into the area
designated by the application.

Likewise, when the application is
ready to read the third chunk of the
file, MS-DOS will find sector 64
already in the sector buffer. The last

last less than six months. (Unfortunate-

ly, it has lasted much longer than that

as part MS-DOS.)
In the last few days of 1980, a new

version of the DOS was released, now
known as 86-DOS version 0.3. Seattle
Computer passed this new version on
to Microsoft, which had bought non-

exclusive rights to market 86-DOS and
had one customer for it at the time.

Also about this time , Digital Research

released the first copies of CP/M-86. In
April 1981, Seattle Computer Products
released 86-DOS version 1.00, which
was very similar to the versions of MS-
DOS that are widely distributed today.

In July 1981, Microsoft bought all
rights to the DOS from Seattle Com-
puter, and the name MS-DOS was
adopted. Shortly afterward, IBM an-
nounced the Personal Computer, using

as its operating system what was essen-
tially Seattle Computer's 86-DOS 1.14.
Microsoft has been continuously im-

proving the DOS, providing version
1.24 to IBM (as IBM's version 1.1) with
MS-DOS version 1.25 as the general
release to all MS-DOS customers in
March 1982. Now version 2.0, released
in February 1983, has just been an-
nounced with IBM's new XT com-
puter.

32 bytes of the sector will be moved
into place without a disk read.

For its own internal simplicity, MS-
DOS has only one sector buffer. Be-
tween the 15-record reads, should the
application request some other trans-
fer that requires use of the buffer,
then the buffer contents will be
changed, and these optimizations are
not possible. In this particular case, in
which most of the disk transfer does
not need the buffer, there will be very
little difference in speed either way.
Let's look at a different case where
this optimization is practically essen-
tial.

Suppose the application wishes to
write a file sequentially, one 16-byte
record at a time. When the first
record is written, MS-DOS simply
copies the 16 bytes into the first part
of the sector buffer. As each of the
next seven records is written, it too

246 June 19$3 © BYTE Publications Inc Circle 405 on inquiry card.--♦

Circle 164 on inquiry card.

SOLID, OAK
SOFTWARE.

DISTINCTIVE COMPUTER FURNITURE.
FACTORY DIRECT.

UNCONDITIONALLY GUARANTEED.
All the peripherals you can buy won't help
the productivity of your computer system if
you don t have an organized way to utilize
them. System VII Furniture gives you an
efficient , comfortable workspace . With the
warmth and beauty of hand-rubbed Oak

and the affordability of factory-direct
delivery.
Write us, or call our toll-free number to order
a full-color catalog. Send $1.00 plus $1.00
shipping and handling. $2.00 will be credit-
ed toward first purchase.

V/` CALL. 1-800-547-8888 Dept. F
P.O. Box 427 e• Lafayette, Oregon 97127

lntrodudng SPL If you have a computer

the first multi-mode spooler Get A Second
for CP/M computers

If you believed that your computer
couldn't do better than a single task
system think again. You can convert
your machine into a dual-task computer

Computer
FOR $139

with SPL, the amazing Spooler program
developed by Blat R+D. SPL enables you
to use hidden capacity available on your
CP/M computer to print documents and
run your ordinary programs, all at once.

While printing, your regular
programs won't stop
processing, waiting for the
printer to finish. SPL will store
the information to be printed in
internal or external (disk
drives) memory until the printer is
ready to receive the data. Result:
your programs will run at full speed.

As SPL can use up to the full
capacity of your disks for temporary
storage, it's much more powerful
than hardware spoolers, which are
limited to 64k memory or less.

SPL is an advanced product with
several modes of operation. In addition
to intercepting the output to the printer,
SPL can print your existing text files, or
those that your programs will create from
now on . SPL will even take care of tab
expansion . As an added bonus, SPL
needs no installation on most CP/M 2.x
computers.

You could get an equivalent increase
in computing power by spending $1000
to $3000, but SPL is only $ 139, including
disk and manual.

To order your SPL program call us
today specifying what disk format you
require. You can charge it to your VISA
or Master Card if you prefer.
Blat Research +Development Corp.
8016 188th SW, Edmonds WA 98020
Call toll - free 1 -800-LOBO-BAY
In WA call [206) 771-1408

is just copied into the appropriate
position in the sector buffer. Again
with a 128-byte sector of an 8-inch
single-density format, the sector buf-
fer would be full at this point. Upon
attempting to write the ninth record,
MS-DOS would find it needs to put
the record in a different sector from
the one currently in the buffer. The
current buffer contents are marked
"dirty," meaning they must be writ-
ten to disk rather than discarded. MS-
DOS does this and then moves the
ninth 16-byte record into the buffer.

Note that MS-DOS did not write
the sector buffer automatically after
128 bytes had been written to it. This
is because the DOS has no notion of a
sequential file: every disk transfer has
an explicitly specified record position
and record size . Thus, it does not
think of the buffer as "full"-for all it
knows, the application program
might back up and write the first 16
bytes over again . So the data is simp-
ly kept in the buffer until the file is
closed or until the buffer is needed for
something else.

Another optimization was taking
place here that may have gone un-
noticed. MS-DOS is always aware of
the exact size of its files, and the
assumption in the previous example
was that this file was being newly
written . Had it already existed, MS-
DOS would have been forced to pre-
read each sector into the sector buffer
before copying any records into it.
This is essential in case the program
does random writes, intending to
change only selected portions of the
file. When the file is being extended
(as in this case), the preread is not
performed.

The possible outcome of this ap-
proach to buffer handling is that
when the application program re-
quests a write and is told it was suc-
cessfully completed, the data may, in
fact, not yet be written to the disk.
The alternative approach is called
buffer write-through, in which the
data in the sector buffer would be
written to disk each time the applica-
tion requested a write. This would
mean , in the example, eight rewrites
of the same sector before moving on
to the next, requiring a minimum of
1.2 seconds to write just 128 bytes! As

250 June 1983 © BYTE Publications Inc Circle 44 on inquiry card.

Circle 440 on Inquiry card.

P&T CP/M®2 is
GROWING

Start with a Model II floppy system and
grow into a hard disk. Since all P&T
CP/M 2 systems are fully compatible,
you will have no conversion worries.

Special note : P&T hard disk systems
allow you the user to configure logical
drive assignments to your specifications.
Write for more details.

Prepaid VISA, M/C, or COD orders accepted.
All prices FOB Goleta and subject to change.

CP/M is a registered trademark of Digital
Research . TRS-80 is a trademark of Tandy Corp.

PICKLES
& TROUT

PICKLt

P.O. BOX 1206
GOLETA, CA 93116

(805) 685-4641 R001 ^

the logical record size gets smaller,
the time required to write becomes
greater.

The presence of only one buffer
does bring about the definite possibil-
ity of buffer "thrashing." Take the ex-
ample of an application such as a
compiler that will alternately read a
small amount from one file and write
a little bit to another. If both the
reads and writes consist of a single
16-byte record, then the following se-
quence will be performed for each
pair of records:

•read input file, get record from buf-
fer
•read output file, put record into
buffer
•write output file

For each record pair, three disk trans-
fers are required. The result would be
unbearably slow. The presence of
only one sector buffer in MS-DOS is
a design inadequacy that is difficult to
defend (but it does help keep the DOS
small). The practical solution is for
applications that must access more
than one file at a time to provide their
own internal buffering. By requesting

transfers that are at least half as big as

the sector size , thrashing can be sub-

stantially reduced.

MS-DOS 2.0
Microsoft has now made available

MS-DOS version 2.0 to all OEM (ori-

ginal equipment manufacturer) cus-
tomers of previous versions. The 10
months put into version 2.0 by the
MS-DOS team probably exceeds the
total effort behind the previous 1.25
release, including the original devel-
opment at Seattle Computer Prod-
ucts. While the changes have been
substantial, the basic structure is still
recognizable. I have been discussing
the DOS at such a low level that most
of what I've talked about applies
directly to version 2.0 as well. Here
are the three main differences, along
with my personal comment as
original author of the DOS. I was not
involved in the MS-DOS 2.0 project.

MS-DOS 2.0 allows multiple-sec-
tor buffers. The number is deter-
mined by a configuration file when
the DOS is loaded. It can be easily ad-

justed to the user's needs: for exam-
ple, to accommodate more buffers to
prevent thrashing (this is the ideal
solution to the buffer thrashing prob-
lem previously discussed) and fewer
buffers to make more system memory
available.

The new MS-DOS does not keep
the file allocation tables in memory at
all times . Instead, the tables share the
use of the sector buffers along with
partial-sector data transfers. This
means that at any one time, all, part,
or none of a FAT may be in memory.
The buffer-handling algorithms will
presumably keep often-used sectors
in memory, and this applies to in-
dividual sectors of the FAT as well.
This change in the DOS goes com-
pletely against my original design
principles. Memory is getting cheaper
all the time, so dedicating a few thou-
sand bytes to the FATS should be
completely painless. Now we're back
to doing disk reads just to find out
where the data is. In the case of a ran-
dom access to a large fragmented file
(for example, when accessing a data-
base that fills half of a small Winches-
ter disk), it is possible that several
sectors of the FAT would need to be
visited, in random order, to find the
needed allocation unit.

While MS-DOS retains the original
fixed-size main directory, it now can
have files as subdirectories. This
hierarchical (tree-structured) direc-
tory system may be extended to any
depth. This approach is nearly essen-
tial for users to keep track of all the
files that might be on a hard disk.

MS-DOS version 2.0 is, on the
whole, a substantial upgrade of the
previous releases . The three preced-
ing paragraphs are intended only to
point out the way the 2.0 file struc-
ture differs from the file structure I've
discussed, not to give you a complete
product description. n

About the Author
Tim Paterson worked for Seattle Computer

Products on the design of its 8086 computer

system and the operating system now called

MS-DOS. He then worked for Microsoft for

about a year. Since returning to Seattle Com-

puter Products as director of engineering, he

has been prinarily involved with new hard-

ware development.

252 June 1963 © BYTE Publications Inc

	19830601 Byte
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32

	19830602 Byte
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30

	19830603 Byte
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30

	19830604 Byte
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30

	19830605 Byte
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30

	19830606 Byte
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30

	19830607 Byte
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29

	19830608 Byte
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30

	19830609 Byte
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30

	19830610 Byte
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30

	19830611 Byte
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30

	19830612 Byte
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30

	19830613 Byte
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30

	19830614 Byte
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30

	19830615 Byte
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30

	19830616 Byte
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30

	19830617 Byte
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30

	19830618 Byte
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36

