
...J
W
<:
I
U

~
10
o
w
I
Cl.
<:

'" <.)

§
I
Cl.

P·R·Q·D·U·C·T
P·R·E·V·I·E·W

BY GREGG WILLIAMS, JON EDWARDS, AND PHILLIP ROBINSON

BY T E 83

IN BRIEF

Name
Amiga Personal Computer

Manufacturer
Commodore International
1200 Wilson Dr.
West Chester, PA 19380
(215) 431-9100

Price
$1295

Microprocessor
Motorola 68000, a 32-/16-bit microprocessor (32-bit internal data path and
registers, 16-bit external data bus) running at 7.15909 MHz

Main Memory
256K bytes dynamic RAM , user-expandable to 512K bytes;
machine's design allows for maximum of 8.5 megabytes

ROM
192K bytes of ROM containing multitasking, graphics, sound,
and animation support routines

Graphics
Five modes (320 by 200 pixels, 32 colors; 320 by 400, 32 colors; 640
by 200, 16 colors; 640 by 400, 16 colors; sample-and-hold mode);
independent horizontal and vertical scrolling of dual playfields;
eight hardware sprites; colors chosen from a palette of 4096 colors

Sound
Four independent audio channels; sound produced without supervision
of 68000

Floppy Disk
Built-in 3V2-inch double-sided disk drive. Disks hold 880K bytes
in 160 tracks, each with eleven 512-byte sectors; drive hardware can read
an entire track at a time

Keyboard
Detached 89-key keyboard with calculator pad, function and cursor keys;
keyboard returns row/column keycodes for each key, sends both key-up and
key-down signals; can sense up to two keys simultaneously;
8-key type-ahead buHer

Expansion Ports
Disk port onto which three additional disk drives can connect via daisy chain;
serial port with maximum transfer rate of 500,000 bps;
programmable parallel port normally configured as Centronics-compatible;
expansion bus includes full set of signals for optional peripherals and
memory expansion

User Interface (Intuition)
Supports multitasking through the use of virtual terminals; allows simultaneous
display of diHerent resolutions and graphics modes

Bundled Software
AmigaDOS
Voice Synthesis Library
ABasiC
Tutorial (Mindscape)
Kaleidoscope (Electronic Arts)

Audio and Video Ports
Two stereo audio jacks; RGB analog, RGB digital , and NTSC composite
output

Miscellaneous
Three custom chips to control graphics, audio, and peripheral I/O; chips
connected by 19-bit register-address bus; two-button mechanical mouse

Optional Peripherals
3'l2-inch 880K-byte disk drive; RGB analog color monitor; 256K-byte memory
expansion module; 300/1200-bps modem; MIDI interface; frame grabber

84 B Y T E • AUGUST 1985

THE AMIGA

not coinCidental ly, people want Apple
to increase the Mac's speed, add
color. and lower its price.

Commodore has just introduced a
computer that promises these im
provements, and it does so by doing
many things in hardware At S1295 .
the Amiga Personal Computer (see
photo I) promises lightning-fast
desktop-metaphor graphics in color
and twice as much memory and disk
storage as the Macintosh for several
hundred dollars less than the Macin
tosh (about S900, but you'll have to
buy a monitor or television set for the
Amiga). It also has an expansion bus
and a whopping 192 K bytes of so
phisticated 68000 code in ROM (read
only memory) that extends the multi
tasking, graphics, sound, and anima
tion capabilities of the Amiga
hardware.

SYSTEM DESCRIPTION
The Amiga is summarized in the In
Brief section on this page. It has no
slots for expansion cards, but Com
modore later intends to offer a box
that connects to the expansion con
nector to add several expansion slots.
(It is theoretically possible to add 8
megabytes of memory in this way.)
The Amiga's disk operating system
will also be able to look at the expan
sion box, determine what peripherals
are present. and configure itself ac
cordingly. regardless of the box 's
contents.

SYSTEM ARCHITECTURE
The Amiga has a unique architecture
that is only partially described by a
functional block diagram (see figure
I) Three custom chips relieve the
68000 processor of many tasks that
tie it down in other computers. How
ever, the diagram does not show the
finely tuned sharing of the system's
data and address buses, the 25 DMA

Gregg Williams is a senior technical editor at
BYTE, and Jon Edwards is a technical editor.
They can be reached at BYTE, POB 372.
Hancock. NH 03449. Phillip Robinson is
a West Coast senior technical editor at BYTE.
He can be reached at BYTE M~gazine. 425
Battery St .. San Francisco. CA 94111.

(direct memory access) channels that
do many data-movement-intensive
operations without tying up the
68000 . or the multiprocessing
routines in ROM that allow the Amiga
to orchestrate a variety of tasks. In the
following sections we will look at the
key elements of the Amiga's system
architecture.

THE CUSTOM CHIPS
The three custom chips that control
DMA. graphics. sound. and I/O (input/
output) (see photo 2) were designed
by Jay Miner. who is best known for
his design of the custom chips in the
Atari 800 series computers. Although
we will discuss them in depth by func
tion. here is a simple breakdown:

• The "animation custom chip" actual
ly contains several miscellaneous
functions. It is the "traffic cop" that
controls DMA. It contains the Copper.
a coprocessor that can directly con
trol the other chips in relation to the
video beam. and the Blitter. a device
that quickly draws lines. fills areas with
a given color. and manipulates rec
tangular blocks of pixels.

THE AMIGA

• The graphics custom chip. which
manipulates the visible display. per
mits up to two independent bit
mapped images and eight sprites
(which are images that can be moved
easily around the screen. "under" or
"on top of" the bit-mapped images).
• The peripherals/sound custom chip
contains four channels of sound. the
disk controller. an interrupt controller.
and the interfaces for the serial port
and the mouse/joystick port.

INTERRUPTS AND DMA
In the Amiga. all the peripherals are
interrupt-driven-that is. the 68000 is
not tied up constantly polling them to
see if they have new data; instead. the
68000 gets data from the peripheral
only when the peripheral sends an in
terrupt signal. The peripherals/sound
chip receives interrupt-request signals
from one of 15 sources (e.g .. the disk
drive or a sound channel). translates
the request to one of six interrupt
levels supported by the 68000 (the
seventh is reserved for future use).
and sends the interrupt signal to the
68000.

The 68000 shares the address and

data buses with 25 channels of DMA.
the registers and logic of which reside
in the custom chips. Amiga's DMA is
fast for two reasons: first. the fact that
each device has its own DMA chan
nel decreases the overhead asso
ciated with a DMA operation; second.
many DMA operations are interleaved
with 68000 bus access in a way that
makes the DMA transparent to the
68000 (see below for details).

When DMA occurs between mem
ory- and custom-chip registers. the
use of the 19-bit register-address bus
(see figure I) makes the transfer twice
as fast. By putting the memory ad
dress on the address bus and the
register address on the register
address bus. the DMA circuitry causes
the data value to move directly from
the memory address to the register.
This occurs twice as fast as DMA
would via the 68000. which would
first read the data into itself and then
write the result to the register.

LIBRARIES AND DEVICES
System software (much of it in the
192 K bytes of ROM) contains libraries.

(continued)

--TV----RG8-COMPOSITE--- VIDEO

GAME 1/0

PRINTER PORT

Figure I: A block diagram of the Amiga Personal Computer.

1/0 AUDIO

CHIP MEMORY
256K BYTES STANDARO
256K BYTES ADD-ON

AUGUST 1985 • BY T E 85

Composite
video out

Connector
to RF modulator

RGB
video out

256K
dynamic RAM

Animation
custom chip

Graphics
custom chip

Audio out

n

Display

Serial
interface

bus arbitration,
RAM support,
and bus drivers

External
disk interface

8520s

Parallel
interface

Keyboard
connector

processor

Locations
for ROMs

Photo 2: Tlie Amiga motlierboard. Tlie internal disk drive. wliicli lias been removed. would normall y obscure tlie lower riglit corner
of tlie motlierboard Tlie power supply (not sliown) is to tlie left of tlie motlierboard.

86 BY T E • AUGUST 1985

a predefined way of organizing useful
routines so that they can be accessed
with maximum flexibility. Libraries
can be resident or transient and can
be used at any memory address
(when they're in RAM [random-access
readlwri te memoryf). Both routines
and data can always be ca lled v ia a
68000 indirect reference with offset;
this allows you to write code using a
library routine without knowing that
library's address at compi le time. (In
fact. all the code in the system can be
referenced knowing only one fixed
address in the machine, and even that
address is supplied to any machine
that needs it) A device is an extension
of the library concept that allows soft
ware to access i/O devices (both pres
ent and future) in a uniform way.

THE EXEC ROUTINES
The Exec system is a collection of
reentrant optimized 68000 ROM
routines that perform many functions
vital to the operation of the Amiga.
It includes routines that create and
manipulate lists and queues, schedule
tasks by priority, handle interrupts,
organize device 1/0. contro l memory
use, and perform other functions.

An important data structure in the
Amiga is the list node. The list node is
a block of data with pointers to the
predecessor and successor nodes in
the list it's in, two 8-bit type and priori
ty fie lds, and an associa ted block of
data. A list is a doubly linked chain of
list nodes and items, started by a
header that points to the first and last
nodes. Exec contains several routines
that let you do th ings like create a new
list. insert a list item into its proper
place in a queue, and remove a node
from a list

Another important set of routines
allows you to manipulate tasks. A task
is a unit of work that shares the Am iga
with other tasks in a way that varies
wi th both the type and priority of the
task. (All the current tasks are held in
a queue and are executed by decreas
ing priority) Most programs and oper
ations reside in the Am iga as tasks.

The task priority field , wh ich con
tains a number between -128 and
127, determines the order in which

THE AMIGA

The Exec routines
perform many
functions vital

to the operation
of the Amiga.

tasks will execute. Tasks with identical
numbers share the Amiga in time
slices of preselected duration. A task
wi th higher priority preempts the cur
rent task and begins executing.
Because the system saves a task's
states, reg isters. and stack area, a task
ca n resume at any time. More impor
tant. programmers do not have to
make allowances for other tasks that
may be running concurrentl y- whi le a
task is active, it "thinks" that it has full
unrestricted access to the 68000.

SHARING THE SYSTEM Bus
Consider that the Am iga ca n simulta
neously read the disk, play four chan
nels of audio, and show 16-color low
resolu tion bit-plane graphics and
eigh t sprites wi th vi rtuall y no slow
down of the 68000 processor This is
possible largely because of the way
various subsystems share the bus.

The Amiga's 68000 runs at 7.15909
MHz, wh ile its memory run s at twice
that speed Most o f the instructions
in the 68000 alternate between using
the bus and doing internal ca lculation.
In this situation, the memory can run
at its top speed and still leave every
other bus cycle free.

The bus sha ring takes place in sub
divisions of the time the electron gun
takes to draw one line of pixels and
do a horizontal retrace, approximately
63 microseconds (IlS). Thi s divides
into approxi mately 226 memorY
access cycles of 280 nanoseconds (ns)
each. The Copper, Bl itter. and 68000
access memory on the even cyc les (0.
2.4 J: the odd cyc les (I. 3, 5, .. .)
are reserved for four cycles of mem
ory-refresh DMA. three cyc les of disk
DMA. four cycles of audio DMA
(enough for four channels), 16 cycles
of sprite DMA (enough fo r eight
sprites). and 80 cyc les of b it-plane

DMA (enough to show a 16-color low
resolution image). The DMA ci rcuits
on each ch ip "know" when their slots
occu r on each hori zontal line and
automatica ll y initiate the DMA trans
fer without involving the 68000.

In many cases, the Copper and the
Blitter aren't act ive, leav ing the 68000
running at fu ll speed (Actually. some
instructions need the bus at odd
times: if the bus isn't avai lab le. the
68000 will insert wa it states until the
bus-arbitration PAL [programmed
array logic chip[signals that the bus
is free by asserting the 68000's DTACK
line. This happens more frequently as
the custom ch ips demand more of the
bus's cycles)

Several things modify this bus shar
ing. If . you use more than fou r bit
planes of low-resolution display, or
more than two high-resolution bit
p lanes, the bit-plane DMA will steal
some memory cycles from the 68000.
Both the Copper and the Blitter have
higher priority than the 68000 and
wi ll get the cycles they need first If
the Blitter senses a memory-bus re
quest by the 68000, it wi ll halt within
a few cyc les to let the 68000 use the
bus: then it will again take over the
bus and continue. This gives the
68000 some cycles even when the
Blitter is running. If you set an inter
nal "Blitter priority" bit. however, the
Blitter steals all the cyc les it needs
from the 68000. Even this is not as
bad as it sounds: whenever any of the
above items steals cyc les, it st ill per
forms its functi on faster and more ef
ficiently than the 68000 could have

MULTITASKING
The Am iga is multitasking- that is, it
can work on more than one thing at
a time. At a low level. for example this
means that the Amiga ca n move
sprites, read from the disk, and play
music at the same time. At higher
leve ls, several programs ca n run si
mu ltaneously in overlapping windows.

The Amiga's multitasking ability
comes from several features we've
already discussed the interrupt struc
ture and th e Exec multitasking rou
tines in ROM. Interrupts. wh ich are

(continued)

AUGUST 1985 • BY T E 87

routed through and prioritized by the
peripherals/sound chip. initiate task
switching. For example. when a pe
ripheral signals its need to do I/O. the
interrupt goes through the periph
erals/sound chip and causes the pe
ripheral 's interrupt routine to execute
(assuming that no interrupt of higher
priority is running) . The interrupt
routine either handles the peripheral 's
need immediately or notifies a task to
do so. then the routine ends. In both
cases. the Amiga then calls the task
rescheduler. which ensures that the

ADDRESS
(HEXADECIMAL)

000000

040000

080000

1.5 MEGABYTES-
RESERVED

200000

8 MEGABYTES RESERVED
FOR FUTURE USE AS PROCESSOR
RAM AND PER IPHERALS
(LOCATED IN EXPANSION BOX)

THE AMIGA

appropriate task has the chance to
use the system.

THE COPPER
The Copper is a coprocessor inside
the animation chip that runs its own
program. The execution of this pro
gram is tied to the progress of the
electron beam as it draws the video
display. Because of this capability. the
Copper is most often used to control
the graphics and sound parts of the
custom chips. thus relieving the 68000
o f the same task. The Copper reads

-256K OF CHIP RAM
~(RAM FOR STANDARD MACHINE)

256K OF CHIP RAM
(OPTIONAL PLUG -IN MEMORY)

---- ----------
AOOOOO

1.988 MEGABYTES-
RESERVED

BFDOOO _12K RESERVED AS ADDRESS SPACE
COOOOO FOR TWO 8520 SERIAL 1/0 CHIPS

(ADDRESSED AT BFDOFF AND
BFEOFE HEXADECIMAL)

0.996 MEGABYTE-
RESERVED

DFFOOO -- CUSTOM CH IPS ARE ADDRESSED
EOOOOO IN THIS 4K SPACE

512K-RESERVED

E80000 512K CONTROL AREA FOR
CONFIGURATION OF EXPANSION AREA

FOOOOO

832K-RESERVED

FOOOOO;-192K. OFSYSTEM ROM

-FFFFFF IS FINAL ADORESS-
TOTAL WORKSPACE IS 16 MEGABYTES

Figure 2: The Amiga memory map.

88 BY T E • AUGUST 1985

its instructions from memory and uses
DMA to write from its program (in
memory) to the registers in itself and
the other two custom chips. (Accord
ing to Jay Miner. this is not so strange
if you look at the three chips as "one
big custom chip:')

The Copper's instruction set has
only three instruction types: move im
mediate data to a register. wait until
the electron beam passes a given
position. and skip past the next in
struction if the electron beam is past
a given location. The beam-position
values are accurate to the exact line
vertically and to 4 low-resolution
pixels (or 8 high-resolution pixels)
horizontally.

The Copper's versatility can be ex
tended by clever use of its registers.
For example. you can get the Copper
to jump to a given instruction by caus
ing the new address to be placed in
the Copper's internal "program
counter." By setting bit 15 of the IN
TREO (interrupt request) register. the
Copper can cause a level-6 interrupt.
which should lead to a more complex
68000 routine that will service the
situation that caused the interrupt.

One important aspect of the Cop
per is that. while it is waiting for the
electron beam. it is off the system bus
and does not tie up any resources.
This is in contrast to many systems
that tie up their processors whi le
waiting for a given beam position.
Because of the Copper. the 68000 is
never tied up for several milliseconds
waiting for a display-related event.

The Copper can handle many basic
system functions without the interven
tion of the 68000. For example. it can
refresh certain bit-plane and sprite
values that must be restored at the
beginning of each frame. It can also
change the color palette in mid
screen (giving you more than 32
colors on the screen) . change the
graphics mode (saving memory). and
update the display memory without
glitches by changing an image after the
electron beam has drawn it for the
current frame.

The Copper programs give the max
imum amount of control over the
video display and events of that

periodicity, but most programmers
will not create them directly. Many of
the ROM routines that accomplish
high-level tasks manipulate Copper
programs to get their work done.

MEMORY SPACE
The first 512 K bytes of memory is
called the chip memory (see figure 2 for
a memory map). Any function per
formed by the custom chips-bit
plane and sprite images, Copper pro
grams, and other data (covered
below)-must be in this memory area.

Of course, in the standard 256K-byte
Amiga (or the expanded 512 K-byte
version). the chip memory is also
used for everything else a computer
needs RAM for. Commodore/Amiga
may announce an expansion box at
a later date that can accommodate
various peripheral cards and up to 8
continuous megabytes of memory.
Normal programs and data should be
placed there, leaving the display
memory free for its specialized uses.

GRAPHICS
The Amiga's graphics are, in a word,
breathtaking-in both their quality
and their speed. The machine's major
graphic components are the playfield,
the sprites, the Blitter. and the anima
tion and text routines.

THE PLAYFIELD
A bit map is an area of memory that
the computer interprets as a rec
tangular array of pixels (dots) ; most
computers have some bit-mapped
graphics capability. Many machines
form different colored pixels by
grouping two or more adjacent bits in
the bit map. The Amiga, however,
uses only one bit per pixel in its bit
map (this is called a bit plane) and
"stacks" separate bit planes together
to get different colors (see figure 3).
(The colors available are not "hard
wired" into the machine but are speci
fied in a color-register table, also known
as a color palette.) An image created by
multiple bit planes is called a raster.
The playfield is the bit-mapped graph
ics display that comprises most of the
Amiga's video display.

The Amiga can stack up to five bit

THE AMIGA

FIVE BIT PLANES

INDEX FOR
COLOR OF
PIXEL

VIDEO DISPLAY

BRIGHT PINK
PIXEL

000 TRANSPARENT
3D2 MEDIUM GREEN

7D6 LIGHT GREEN

D88 l BRIGHT PINK I---

1 E AAA LIGHT GRAY

1 F 333 DARK GRAY

INDEX VALUE MEANING
(HEXADECIMAL)

COLOR REGISTER TABLE

Figure 3: Amiga playfield graphics. The bits from a given position in each bit plane
combine to create an index into the color-register table. The selected entry in the color
register table determines the color of the pixel.

planes to get a maximum of 32 colors.
The color-register table contains
12-bit va lues that can specify any of
4096 different colors. Therefore, the
Amiga can draw images that use any
32 of these 4096 colors.

The Amiga has five bit-mapped res
olutions. Four of them come from two
horizontal resolutions (320 pixels per
line, low resolution , and 640 pixels
per line, high resolution) times two
vertica l resolutions (200 visible lines
per screen, noninterlaced frame, dis
played every 1/60 second, and 400
visible lines per screen, interlaced
frame, displayed in two passes every
1/30 second). These can take any
where from a minimum of 4000 bytes
(for a 320- by 200-pixel image) to
32,000 bytes (for a 640- by 400-pixel
image) . Photo 3 shows an example of
the 320 by 200 mode.

The fifth mode, called hold-and-modify,
uses six bit planes in a way that can
simultaneously display all 4096 colors
on screen. In this mode, the top 2 bits
of a pixel control the interpretation of
the bottom 4 bits, which may repre-

sent either a color-register table va lue
for that pixel or a modification to one
component of the previous pixel 's
color. Using hold-and-modify, you can
display all 4096 colors on an analog
RGB (red-green-blue) color monitor.

A playfield image can be much
larger, both horizontally and vertical
ly, than the screen area used to dis
play it. By manipulating several
register values, you can scroll an
image horizontally, vertically, or both ,
with very little effort. (When the total
image is wider than its displayed part.
the last pixel on one line and the first
pixel on the next are not adjacent and
are separated by a fixed number of
bytes The Amiga makes use of modulo
registers to make the manipulation of
two such bytes as fast and as simple
as if they were contiguous.)

Another display option is called the
dual-playfield mode. When you use this
mode, up to six bit planes are divided
into two separate images of up to
three bit planes each, wi th one image
having priority over the other. This

(continued)

AUGUST 1985 • BY T E .9

often simplifies complex graphic dis
plays. For example. to simulate the ef
fect of looking at a landscape through
binoculars. you can scroll a wide land
scape playfield "underneath" a sta
tionary playfield that is all black ex-

THE AMIGA

cept for a transparent area that lets
the lower playfield show through

SPRITES
A sprite is a small bit-mapped image
that can be repositioned simply by re-

Photo 3: Robocity. an example of Amiga graphics in the 320- by 200-pixe/
32 -color mode.

Photo 4: The Workbench display This is an example of the 640 by 200 mode.

90 BY T E • AUGUST 1985

defining the horizontal and vertical
va lues for its upper left corner; sprites
are independent of the play field and
appear to be over or under each
other and the playfield(sl according to
a specified priority

The Amiga has eight hardware
sprites. each of which can have three
colOrs (sprites are two bit planes
deep. and each 2-bit pixel translates
to three colors plus transparency).
Am iga sprites are 16 low-resolution
pixels wide by any height Each pair
of sprites shares a different three
color color-register table (for example.
sprites 0 and 1 share color registers
17 . 18. and 19. sprites 2 and 3 share
21. 22. and 23). allowing the eight
sprites to use up to 12 co lors. Adja
cent sprites (0 and 1. for example) can
be attached. meaning that their four bit
planes are combined; an attached
sprite pair can then use color registers
17 through 31 to display up to 15
colors.

As happens often in the Amiga.
complexity underlies apparent simpli
city A sprite is actually a 16-bit va lue
with a specified hori zontal displace
ment for the current line of the video
display In manual mode. you are
responsible for creating the sprite's
image on a line-by-line basis (few peo
ple wi ll use this mode directly) In
automatic mode. however. you activate
the sprite's DMA circuitry. which looks
to a data structure that contains the
line-by-Iine position and shape of the
sprite and draws it automatically. In
addition. you can redefine the sprite
indefinitel y while the electron beam
creates the video display. The sprite
DMA circuitry accepts a list of sprite
position and shape-definition words
and draws them as long as the bot
tom line of one occurrence and the
top line of the next are separated by
at least one video line (note that this
is without intervention of the Copper).

THE BUTTER
The Slitter is an area of the animation
chip that controls a DMA channel de
dicated to drawing lines and manipu
lating rectangular areas of the play
field. Its name comes from an earlier

(continued)

term, bit-bit. which means "bit-mapped
block transfer." Miner calls it a Bimmer,
for "bit-mapped image manipulator:'
because of its ex tended capabilities,
but "Blitter" is used exclusively in the
Amiga's documentation.

When manipulating blocks of an
image, the Blitter (when properly set
up) takes care of a number of "house
keeping" tasks that. in other com
puters, tie up a lot of the processor's
time. These include masking out the
bits just outside the image that belong
to the same memory word as the
desired bits; sh ifting the image several
bits horizontally to match the word
alignment of the destination; and fill
ing an area bounded on the left and
right by two non horizontal single-pi xel
lines (this is the basis of its area-fil l
capability)

The Blitter distinguishes itself from
other bit-bit devices by its ability to
combine up to three source areas in
one of 256 ways to become the des
tination area. (If we call the sources
A. B, and C and their inverses A, B,
and C, these combine in eight
ways: ABC. ABC, ABC. ... , ABC
There are 256 possible combinations
of these eight terms)

When being used to draw lines, the
Blitter can draw lines as I s, Os, or a
specified pattern ; it can also draw
single-bit-wide lines, which are
needed to bound an area to be filled .

In both its line-drawing and area
manipu lating operations, the Blitter
must have a moderate amount of
"housekeeping" calculations done
fi rst. Given the speed and simplicity
o f the resulting operation, the setup
calculations are not an unreasonable
overhead; however, you can deal with
the Blitter on a higher level using
some graphics routines in ROM.

ANIMATION ROUTINES
The animation routines that are part
of the Amiga's ROM form the basis for
the most sophisticated co lor anima
tion the personal computer market
has ever seen. One of the demonstra
tions we saw, Robocity. showed five
cartoon characters roaming across the
screen. The resolution was very
good- only when you looked closely

92 BY T E • AUGUST 1985

THE AMIGA

Trw basic
element in the

animation subroutine
is the GEL,
a graphics
element.

could you see the " jaggies" that
proved you weren't looking at a hand
drawn cartoon.

Animation is accomplished through
a few subroutine calls that draw a
linked li st of things needing to be
animated. The basic element in the
animation subsystem is the GEL , or
graphics element. There are four
types of GELs: VSprites, BOBs, An im
Comps, and An imObjs.

VSprite stands for "v irtual sprite" A
VSprite is a data structure in memory,
closely tied to a hardware sprite, that
is managed by the animation routines.
By letting the routines manage the
mapping of VSprites to hardware
sprites, you can (wi th some limita
tions) define more than eight VSprites
and let the routines keep track of the
details automaticall y. VSprites can
also be clipped to display them se lves
only with in a certain horizontal slice
of the display.

BOB stands for "Blitter object." A
BOB is an image that acts like a sprite.
but the animation routines use the
Blitter to "paste" the image onto the
playfield and (optionally) restore the
image that was "underneath" the
BOB. A BOB is defined by the com
bination of a BOB data structure and
a VSprite data structure, both of
which point to each other. One advan
tage of a BOB over a VSprite is that
a BOB is drawn into a playfield-this
means it can be of any width and it
can have as many co lors as the play
fi eld (up to 32) BOBs can also be
clipped to appear only in a certain
rectangular window.

An AnimComp is an an imation com
ponent. one part of an AnimObj, an
an imation object. If your AnimObj is
a figu re of a man walking, its Anim-

Comps will probably include BOBs for
a torso, a head, two arms, and two
legs. Each AnimComp includes
several views of the same object (e.g.,
arm bent. arm straight) wi th an asso
ciated time that must elapse before
progressing from one view to the
next. Once all this is assembled,
repeated cal ls to the Animate routine
substitute new views (as determined
by their timer constants) into the
linked list of GELs before drawing the
items in the list.

You can do sequenced drawing animation
by specifying a series of views that
describe a repeated motion and by
specifying an offset to add to the ob
ject's position each time the routines
cycle from the last view to the first. For
example, take the example of a cat
walking two steps to the right in six
views so that view I appears natural
when it is shown after view 6. By
specifying the correct horizontal off
set to the right (which gets added
every time the image cycles back to
view 1), the Animate routine wil l auto
matically draw the six views in the cor
rect order and position to make the
ca t appear to walk across the entire
width of the screen.

A lternatively, you can have the
Animate routine do motion-control anima
tion, in which the next position of a
BOB is automatically calculated from
its current position and four x- and y
axis ve lOCity and acceleration va lues.
(You can also do this with a " ring" of
BOB views that cycle as in sequenced
drawing animation.)

Another routine, DoCollision, detects
two types of coll isions, GEL-to-GEL
collisions and boundary collisions
(collisions of GEls with rectangular
boundary windows); the routine then
executes a given collision-handling
routine from a table of 16 possible
rout ines. GELs can be coded so that
on ly certain types of col li sions
register (useful in a game, for exam
ple, to detect missile-target collisions
but not missile-missile collisions)

TEXT
The Amiga treats text as a special
kind of graphics. Fonts are described

[contin ued)

by a Text Font (TF) data structure that
allows the crea tion of either mono
spaced or proportional characters of
any height. To save room with larger
fonts. a font may define anywhere be
tween I and 255 characters. TWo
fonts. Topaz 8 and Topaz 9. are in the
Amiga ROM. The first gives 40 char
acters per line in normal resolution .
80 in high resolution: the second
gives 30 and 60 characters per line.
respectively. Additional fonts may be
loaded into and removed from RAM
as needed.

The Amiga uses the ROM routine
TxWrite to draw a given message to
a given location. The text can be
drawn in one of two user-definable
"pen" colors and in one of three draw
ing modes: JAM\. an overstrike mode:
JAM2. a mode that draws both the
character in one color and the "white
space" behind it in another: and Com
plement. which inverts every pixel
that corresponds to a pi xel of the
character being drawn.

As in the Apple Macintosh. fonts
may be modified by combi ning any of
several styles: underline. itali c.
boldface. and extended. However.
unlike the Macintosh. the Amiga text
drawing routine looks for a separate
ly defined font that contains the
needed style(s) If this fails. a future
revision of the text-drawing routine
may try to modify the existing "nor
mal" vers ion of the font (this is the
only way of achiev ing font styles in
the Macintosh)

AUDIO HARDWARE
The Amiga includes four hardware
channels of sound that are largely
controlled by DMA circuitry. indepen
dent of the 68000. Audio-controlling
routines in part of the Amiga's ROM
extend these capabilities. allowing
you to work with the Amiga's sound
capabi lities at a higher conceptua l
level and to manipulate the sound
channels "on the fly" without "glitch
ing" the output.

The four channels of sound. num
bered 0 through 3. are converted to
ana log signals. filtered through a low
pass filter. and mixed into two
separate output signals. one combin-

94 BY T E • AUGUST 1985

THE AMIGA

Fonts rna!! be
modified by any
combination of
several styles:

underline, italic,
boldface, and extended.

ing channels 0 and 3. the other. chan
nels I and 2. The fi lter begins to at
tenuate frequencies between 5.5 kH z
and 7.5 kHz and effectively eliminates
any higher frequencies. This elimi
nates much aliasing. which is di stortion
that occurs when a signal that was
sampled too in frequently is played
back.

The sound channels can be con
trolled directly by the 68000. which
gives you complete contro l over the
sou nd but keeps the 68000 from do
ing other work. In most cases. you can
get the sound you need by letting the
DMA channels produce the sound
from a table of values (called a sound
table) that describe one or more cycles
o f the needed waveform .

In the Amiga. each aud io DMA
channel includes registers that give
the chan nel's loudness. point to a
16-bit-wide table of sound-table bytes
(the values are fetched a word at a
time and must be stored on even byte
boundaries) . and establish the time
that must elapse before the nex t
sound byte is sen t out. This last is a
period register. which contains a va lue
that is decremented every 279 ns: the
next va lue from the sound table is
sent out when the counter reaches
zero. and the register is reset to its
orig inal va lue. When the pointer to
the sound table reaches its last value.
the pointer is reset to the start of the
table. In this way. the aud io channel
con tinues to produce the given wave
form without supervision until it is ex
plicitly turned off.

Sound channels 0 through 2 can be
attacned to the channels directly above
them to modu late the output of the
higher channel When a chan nel is at
tached. the 16-bit words that make up

its sound table are not interpreted as
two 8-bit sound values. Instead. the
data words are interpreted as volume
or period va lues for the current va lue
in the channel being modulated (i.e ..
the volume value will determine the
current loudness of the channel. and
the period value determines how
much time passes before the channel
sends ou t the next va lue in its sound
table). You can manipulate these
va lues to cause either amplitude
modulation. frequency modulation. or
both.

AUDIO SOFTWARE
The ROM contains three kinds of rou
tines. The first. channel-allocation rou
tines. allow you to allocate. use. and
d iscard a channel without keeping
track of which channel it is. If you have
more than four "virtual" channels
open. the four with the highest priori
ties are mapped to actual hardware
audio channels.

Second. the DMA-control routines
control the way the audio DMA chan
nel manipulates the hardware audio
channel via the various registers and
the sound table. In addi tion. you can
cause the channel to send a user
specified signal bit to an existing task
(which may then trigger some event)
when the sound channel has played
a given number of repetitions of the
sound table: thi s allows tasks to
manipulate the Amiga based on the
sound channel's activity.

Third. the envelope-generator rou
tines automate the task of varying the
amplitude envelope that determines
how slow or fast a note changes
volume when it is played To use these
routines. you must create a table of
four slope/destination values that
describe an ADSR (attack. decay. sus
tain. release) envelope. (The ADSR
envelope tells you how fast the note
gains volume as soon as it starts. what
its maximum value is. how fast it
decays once it reaches that value. on
what level it remains as long as the
note is sustained. and how fast it
returns to zero once the note is re
leased. You can draw such an en
ve lope with four line segments: the

(conti~lued)

Amiga defines the ADSR envelope by
giving the slope and destination y-axis
values for each line segment.) As with
the audio DMA. the software involved
can be told to send a signal bit to a
given task when the envelope is
completed

One potentially sign ificant piece of
code is a library of text-to-speech rou
tines that is included with the stan
dard Amiga computer. These are tran
sient routines that are loaded from
disk to memory when needed: they
are capable of "speaking" normal
English text in a variety of pitches and
rates via one of the sound channels.
We heard the routines and found their
output to be heavily inflected but
understandable even with our eyes
closed (a test that many text-to
speech algorithms fail).

INTUITION
Intuition. the user interface of the
Amiga. sits on top of the disk operat
ing system and provides the icon
oriented. mouse-based. desktop
metaphor interface popularized by
the Apple Macintosh. Intuition com
plements the architectural philosophy
and the graphics capabilities of the
computer by managing a complex
windowing system and providing ac
cess to multitasking capabilities.

Intuition allows programs to ex
ecute. each in its own window. simul
taneously. Each program opens a vir

} Lia I terminal that has access to all the
system resources. Even though multi
ple programs can execute simu lta
neously. on ly one can accept input
and display its menu bar. You can
select which program does this by
clicking on its window: this window
will also display special command
messages from the system. Different
programs can share the video display.
or a single program can create several
virtua l terminals.

To support the simultaneous display
of different resolutions and graphics
modes. Intuition uses screens. which
are rectangular areas that occupy the
full width of the video diplay. Screens
have predefined resolutions. color
palettes. and height and conta in one
or more windows. A bar at the top of

96 BY T E • AUGUST J985

THE AMfGA

each screen identifies the screen.
Al l screens have pull-down menus.

Pressing the right mouse button.
which genera lly summons a menu.
transforms the screen bar into a menu
bar (a strip contain ing the names of
the menus that apply to the current
ly active window) The screen bar also
contains two boxes that. when clicked
with the left mouse button (generally
responsible for selecting things).
move the screen to the top or bottom
of the stack of screens. You can select
menu items in the conventional way. .
although there are several rlew fea
tures. Pull-down menus. for example.
can have up to two levels (see photo
4) Menus can contain options that.
when selected. persist until other.
mutually exclusive choices are made.
Programs may al low you to use com
mand-key/letter combinations to
select common ly used menu items.

Programmers have considerable
flexibility in designing the menus. For
example. menus can appear in multi
column format and contain Waphics.
Menu items can. when selected. be
marked with checks, and they can
automatically d isplay command-key/
letter alternatives.

Windows, which appear within
screens. can support all of the
Amiga's graphics. text. and qnimation
features. Since Intuition opens ap
plication programs in windows. ap
plications must specify their graphics.
text. and color requirements by
selecting or creating an appropriate
screen. Intuition will support as many
screens and windows as can fit in
memory. but only one window and.
by extension. one screen cqn receive
input at a time. As a virtual terminal.
programs need not know if they are
active: they can continue to process
data as long as they don't need any
external input.

You can activate a window either by
moving the on-screen pointer inside
it and clicking the mouse button or by
moving an icon into it. ClOSing a win
dow causes the last activated window
to be reactivated. Windows can in
clude any of several featur<;s. includ
ing vertica l and horizontal scroll bars.
title bars. window-dragging areas

(used to drag the window to a new
position). depth arrangers (which
move the window to the top or bot
tom of a stack of windows). sizing
boxes (which allow you to change the
window's size). and close boxes
(which close a window).

Intuition supports backdrop windows .
which open behind all other windows
and cannot be moved. sized. or
depth-arranged. The application pro
gram is entirely responsible for main
taining its contents. and normal win
dows appear on top of it. A graphics
program. for example. may use a
backdrop window as the primary
drawing area and call a normal win
dow to show you a palette of colors
from which to choose.

Programmers can specify whether
an application will refresh its window
when partially covered and un
covered. or whether memory must be
allocated to save the concealed por
tions of the window. A third choice.
super bit map. reserves enough memory
to store an image larger than the win
dowing system will display. Intuition
automatically adjusts and displays as
much of the super bit map as it can.
Programmers can use th is technique
to create windows whose contents
scroll. They can also determine where
windows will appear. what color to
use when drawing the border and
text. whether the window will have a
border. and whether to include a win
dow title.

REQUESTERS. ALERTS. AND
GADGETS
Requesters are pop-up information
boxes that wait for either keyboard or
mouse input from you. Normally. you
will have to click the left mouse but
ton over an "OK" area before con
tinuing. although you may be able to
switch to a different window (the re
quester will still be there when you
return to the first window). With a
single call. programmers can attach
requesters to a window or to the dou
ble click of the mouse button.

Programmers have access to pre
defined system requesters. like the
"Please Insert Disk XXXX" requester.

[continued)

Inquiry 22 7

IEEE·488 Interfaces and
Bus Extenders For:

IBM PC, PCjr
& COMPATIBLES

DEC UNIBUS, Q"! BUS
& RAINBOW 100

MULTIBUS, VMEbus
STD & S·100

Full IEEE-488 functionality, with the most com
prehensive language and operating system pover
age in the industry. It takes expefience to make
IEEE-488 systems work with nearty 4000 devices
available from more than 500 different manufac
turers, and experience is what enables National
Instruments to take the GPIB to the
second power and beyond.

Your personalguaranlee 01 unsurpassed

~':~~'f.'l:o~~ff,?g~l~d,~~I~;~C~\°a"cce8s .
10100 + man-years 01 GPIB experience.

V NATIONAL
11 !~!!~!~TS r Austin, TX 78727

1-800-531-5066 512/250-9119
Telex: 756737 NAT INST AUS

IBM and Pelr are trademarks of 100ernadonai Busill,f!sS Maahin~s , MULTI
BUS ~ a uad,marli 01 Inlel, DEC. UNIBUS. Q·BUS, ~nd Rainbow 100 are
trademarks of Digital Equipment Corporallon .

98 BY T E • AUGUST 1985

THE AMIGA

To use a custom requester. however,
the programmer must specify things
like gadgets (di scussed below),
borders, requester tex t. and, if
deSired. hand-designed bit-mapped
images.

Alerts are special screens that carry
absolutely crucial information. They
differ from requesters in that no
screen or window can obscure them,
and users must act immediately on
the information before proceeding.
Recovery alerts require immediate
responses: dead-end alerts tell users that
the system has crashed.

Screens, windows, requesters, and
alerts all use gadgets, which are input
devices that attach to windows, re
questers, and alerts. System gadgets in
clude window-sizing gadgets, window-/
screen-dragging areas, depth ar
rangers, and close boxes.

Programmers can design their own
gadgets by specifying border shapes
and colors, describing the select box
of the gadget. providing gadget tex t.
supplying a memory buffer for the
gadget response, and defining how
the gadget will behave.

In addition to system gadgets, pro
grammers can select among Boolean ,
string, integer, and proportional
gadgets. Boolean gadgets are truelfa lse
devices that return a va lue only when
selected. String gadgets return a string
from the keyboard. integer gadgets
retu rn in teger va lues. Proportional
gadgets, which return a va lue propor
tional to their positions on either the
horizontal or vertica l ax is (or both) ,
are similar to scroll bars on the Macin
tosh. A programmer can customize
the appearance of the knob (the ele-

. ment that slides along the ax is of
movement) to someth ing different
from the defau lt rectangu lar shape.

THE WORKBENCH
intuition includes Workbench, an
iconic, window-based command inter
face. The Workbench area is a four
co lor screen with 640- by 200-pi xel
resolution. it is both a screen on which
disks will open and applica tion pro
grams will run and an application that
keeps track of Workbench objects and
displays in formation using intuition

windows. The Workbench automati
cally opens when you enter a disk
containing it. By opening the Work
bench library. programmers can ac
cess Workbench functions to create
and manipulate the Workbench and
Workbench objects.

in the Workbench , users can open
and close disks, tools, pro jects,
drawers, the cl ipboard, and the trash
can. Opening a tool (Amiga's term for
an application program) creates a win
dow on the current screen. Tools
create projects-files associated with
the too l. (A document fil e, for exam
ple, is the project of a word-process
ing application.) Opening a tool auto
matica lly opens a window that lists
the names of available projects. Open
ing a project icon automatically opens
the tool associated with it.

Workbench also supports extended
selection , a method of selecting multi
ple items that will be operated on in
the order they were selected. For ex
ample, you can select a word pro
cessor and three pro jects (docu
ments): the word processor will then
work on the pro jects in the order in
which they were selected.

Drawers are Workbench icons that
contain tools, projects, and other
drawers: when opened, they display
their contents as icons in a window.
To add an item to the drawer, either
drag the item's icon into the window
of an opened drawer or drop it over
a closed drawer's icon. You can delete
an item by moving its icon over the
trash can, a special drawer in each
disk drawer that contains deleted
objects.

The clipboard is a specia l object that
lets you transfer data between tools
(programs) . The clipboard stores the
last text. graphics, or data cut from a
project as a RAM-based file (disk
based if the clipp ing is too large for
memory) By using the clipboard, you
can quick ly transfer information be
tween tools or pro jects.

Programmers can also design cus
tom screens, in which they can specify
things li ke the screen size and posi
tion, the number of colors ava ilable,
the screen titles, and the default font.

(continued)

The Workbench also contains a pro
gram ca lled Preferences that lets you
set things like the maximum time for
two clicks to be considered a double
cl ick. the monitor type. the speed with
which keyboard keys repeat. the inter
va l before they begin to repeat. and
the presence of optional peripherals.
including printers. modems. and
touchpads.

The Preferences program can also
give you access to a command-line in
terface (CLI). which allows you to get
work done via typed-in commands.
The CLI . which opens as a window
under Workbench. wil l not be heavily
documented in the standard manuals.
and you will normally not see the icon
associa ted with it. The CLI uses com
mands that are simi lar to those of
Microsoft's MS-DOS. It can. for exam
ple. examine directories. run pro
grams. and redirect input and output;
in essence. it gives programmers ac
cess to the operating system that is
"underneath" Workbench .

CAVEATS
This product preview is unusual in
that we looked at the Amiga in an
earli er state than we usually do fo r
o ther product previews. We feel
justified in doing this for two reason s:
First. the hardware was in its final sta te
(the custom chips were working on
the production-version motherboard.
although the PROM [programmable
read-only memory[chips did not con
tain the final version of the ROM
code); second. the Amiga should be
announced by the time you read this.
and we feel that the technology used
here is noteworthy. BYTE wil l print a
forma l review of the Amiga as soon
as we can get our hands on a finished
machine.

We wrote this product preview after
two days with the Amiga engineering
staff. much study of four volumes of
technica l documentation and several
user manuals. and subsequent tele
phone conversations. At the time we
saw the machine. neither the ROM
code nor the operating system had
been "frozen." which limited the
amount of software we could see to
the Workbench user interface. several

100 BY T E • AUGUST 1985

THE AMIGA

Table I: This is a list of the
announced hardware and software
for the Amiga.

Hardware
20-megabyte hard disk,

20-megabyte tape backup,
multifunction card ,
2400-bps modem (Tecmar)

Laser disk,
Color digitizer.
Genlock peripheral- allows

computer's
display to overlay an external
video signal (Commodore)

Software
Pascal ,

Linkage Editor,
Overlay Loade r,
Macro Assembler (Metacomco)

Turbo Pascal (Borland International)
Logo (The LISP Company)
Propaint,

Business Graphics,
Graphicraft,
Animation (Island Graphics)

Enable/Write (The Software Group)
Textcraft (Arktronics)
Musicraft (Commodore)
Harmony and four-octave music

keyboard ,
Pitch rider (Cherry Lane

Technologies)
C Compiler (Lattice)
General Ledger,

Accounts Receivable,
Accounts Payable (Chang

Labol'8tories)
7 Cities of Gold ,

One on One,
Archon,
Adventu re Construction Set,
Pinball Construction Set,
Skyfox,
Financial Cookbook,
Deluxe Music Construction Set,
Black Knight,
Video Construction Set,
Return to Atlantis (Electronic Arts)

Communications package
(Software 66)

Welcome Aboard ,
Print Shop,
SynCalc,
Mindwheel (Broderbund)

Keyboard Cadet,
The Halley Project (Mindscape)

All Infocom Interactive fiction
products

demonstration programs, and an
early version of the Graphicraft draw
ing program.

All the screen shots in this product
preview came from working (though
still unfinished) software, but most o f
what we've written about the Amiga's
software came from the documen
tation or the engineers. According to
Commodore/Amiga. the BASIC that
will be bundled with the system will
have ex tended graphics and sound
capabilities driven by ca lls to the
ROM routines. Table I gives a list
of products for the Amiga that we
learned of from their respective
manufacturers.

CONCWSIONS
We were impressed by the Amiga's
detail and speed of the color graphics
and by the quality of its sound system.
The interlocking features of the
Amiga-its custom chips. multitasking
support. multiple DMA channels.
shared system bus. display-driven
coprocessor. system routines in ROM.
etc.-point to a complexity of hard
ware design that we have not seen
before in personal computers. (It's in
teresting to note that the Macintosh's
complexity is in its software and that.
according to several third-party
developers who have used both com
puters. the Macintosh is harder to pro
gram.) The synergistic effect of these
features accounts for the speed. quali
ty. and low cost of the Amiga.

We are also very exci ted about the
inclusion of the text-to-speech library
in the Amiga. This means that any
Amiga program can potentially create
voice output. something that has
never been common in personal com
puters because it was never. until now.
a standard feature.

The hardware looks good-we have
seen it work-but we saw very little
software actually working (a painting
program. the Workbench "desktop."
and a few demonstration programs).
However. we think this machine will
be a great success; if that happens.
the Amiga will probably have a great
effect on other personal computer
compa nies and the industry in
general. _

Inquiry 2 15 -+

	Cover
	Index
	Editorial
	Microbytes
	Letters
	Fixes and Updates
	Whats New
	Book Reviews
	Ask BYTE
	FEATURES
	The Amiga Personal Computer
	Build the BASIC-52 Computer Controller
	THE DSI~32 COPROCESSOR BOARD
	ARCHITECTURE
	Benchmarks
	DSI~32 HARDWARE, SOFTWARE, AND SUPPORT
	CONTEXT~FREE PARSING OF ARITHMETIC EXPRESSIONS

	Declaritive Languages
	PROLOG GOES TO WORK
	LOGIC PROGRAMMING
	DECLARATIVE LANGUAGES: AN OVERVIEW
	THE DEVELOPMENT OF FUNCTIONAL LANGUAGES
	DECLARATIVE LANGUAGES GLOSSARY
	THE ORIGINS OF LOGIC PROGRAMMING
	PROGRAM TRANSFORMATION
	A REFERENTIALLY OPAQUE PASCAL PROGRAM
	THE UNFOLD/FOLD TRANSFORMATION SYSTEM
	CORRECTNESS AND COMPLETENESS OF THE UNFOLD/FOLD SYSTEM
	FUNCTIONAL PROGRAMMING USING FP
	FP SYNTAX
	A HOPE TUTORIAL

	Reviews
	Reviewers Notebook
	The Tandy 1000
	IBM Pascal 2.00
	Review Feedback

	Kernel
	Chaos Manor: The West Coast Computer Faire
	COMDEX in Japan
	Declarative Update
	According to Webster: Greetings and Agitations
	New Microprocessor Chips
	Circuit Cellar Feedback
	BYTELINES
	Whats New

	Unclassified Ads

