
G·R·A·P·H·I·C·S H·A·R·D·W·A·R·E

THE AMIGAS
CUSTOM

GRAPHICS CHIPS
CONDUCTED BY PHILLIP ROBINSON

A conversation with Jay Miner,
the chips' designer

COMMODORE'S NEW AMIGA micro
computer contains a custom NMOS (negative
channel metal-oxide semiconductor) chip set
that provides many powerful graphics func
tions. The Amiga preview in the August issue
of BYTE ("The Amiga Personal Computer"
by Gregg Williams.)on Edwards. and Phillip
Robinson. page 83) briefly described those
chips. Later. we went back for more details
and talked to Bill J<iJlb. Amiga's director of
hardware engineering. and Jay Miner. the vice
president of product development and the
designer of the chips. Miner also designed the
graphics hardware for the Atari VCS (2600).
400. and 800 personal computers.

Although the Amiga team set out to build
a general-purpose microcomputer. Kolb states
firmly. "We not only wanted graphics. we
wanted enough power to do real animated
graphics-where you're not just moving one
sprite around on the screen. We wanted to take
the next major step. and VLSI Jvery-large
scale integration I was the only way to be that
aggressive and keep the cost within reason:·

The Amiga was originally Miner's idea for
the world's most powerful game machine. But
as other people joined the team. that concep
tion changed. and features. capabilities. and
more ROM (read-only memory) were added
to the system.

Block diagrams of the three chips and of
the Amiga's overall architecture accompany
this interview (see figures I. 2. 3. and 4).

ORIGINS
BYTE: What are the names of the three
chips?
Kolb: Agnus. Denise. and Paula. All
OMA (direct memory access) chan-
nels reside in Agnus. Agnus is sort of
a shortening of address generator.
Denise handles most of the video out-
put. Paula's two main functions are
sound and the various I/0 !input/out-
put! functions. Logically, it's one big
chip. For instance. both Denise and
Paula are dependent on Agnus for
their addresses. but they just weren't
feasible as one chip. So they were
split up functionally. but it looks like
a giant control block to an assembly-
language programmer.

BYTE: When did this design start?
Miner: lt really started with the begin-
ning of the company. In the early days
there was more emphasis on the
video game than there was on the
personal computer. The cost targets
were for a much lower-priced ma-

chine. We were thinking in terms of
$300 or less at the beginning.

At that time we planned to use the
68000 chip. and we didn't expect to
have much memory or a built-in disk.
The low-cost game machine might not
even have a keyboard. but it would
have high resolution. a 68000 chip.
and superior graphics. Then as time
went on. it grew and grew. The in-
dividual chips grew. too. The software
people talked us into putting in things
like hardware line-draw and hardware
area-fill.

BYTE: So even at the beginning you were
picturing custom chips for the graphics?
Miner: Oh. yes. l did the chip set that
was in the Atari 400 and 800 and in
the original Atari VCS machine. l had
a good appreciation for the power of
custom graphics chips. We didn't have
nearly the extent of the circuitry that's
on the chips now. We had visions of
a fairly crude form of blitter. nothing

(continued)

Phillip Robinson is a senior technical editor
for BYTE. He can be contacted at McGraw
Hill. 1000 Elwell Court. Palo Alto. CA
94303.

NOVEMBER 198 5 • BYTE 169

as sophisticated as the three-input.
generalized blitter we have now.

THE SIMMER
BYTE: Tell us about the bliiter.
Miner: I like to call it a bimmer because
that stands for bit-mapped image ma-
nipulator. The term blitter is left over
from literature referring to block
transfer. This machine does block
transfer. but it does much more
because it has three inputs. and those
three inputs can be combined in
many different ways.

The logic operations that can be
performed are complete. If you think
of three variables. you can perform
2 56 logic operations on them. The
bimmer is intended to be a non-real-
time machine that transforms images
from one location to another or back.
Its main distinguishing features are
the logic functions on all four inputs

DBR

SPRITE VERTICAL
POSIT ION COMPARE

TV
SYNC

SIGNALS
SPRITE SYNC. VERTICAL COUNTERS POSITION

LIGH T +LIGHT PEN +CONTROL
PEN REGISTERS REGISTERS

a:
0

"'

AMIGA'.S CUSTOM CHIPS

and the capabi lity of barrel shifting,
so you can move an image on any
pixel boundaries. Only two of the
sources have barrel-shift capability.
Also. the bimmer can do "modulos:·
which means that if you're looking at
a large image in bit-mapped memory.
the bimmer can operate on a small
portion of that image. When it gets to
the end of that small portion, you add
a modulo to the address to jump it
to the next line. That's true of the en-
tire display circuitry; all of the bit
planes have the same feature. so you
can display a small image out of a
larger image.

BYTE: We're pretty familiar with the Atari
800 and the chips there. To do horiwntal and
vertical scrolling you had to reset the pointer
to a new byte.
Miner: You could only move one byte
before you had to reinitialize things

RAM ADDRESS GENERATOR

AUDIO BIT DISK
OMA PLANE +REF
CONTROL OMA OMA
LOGIC CONTROL CONT ROL

LOGIC LOGIC

"'-Wa:
Uw Oo..
a:o.. o..o Ou AUDIO BIT DISK u-

CONT ROL PLANE +REF
REGISTERS CONTROL CONTROL

REGISTERS REGISTERS

AGNUS

Figure I : A block diagram of the Agnus chip.

170 BY TE • NOVEMBER 1985

in memory. Here you can do the same
thing. but you can also be displaying
a portion of an actually larger
memory. You've got both ways you
can go here. The engine that puts the
bit planes up on the screen also has
modulo capabil ity. so the address at
the end of one line doesn't neces-
sarily have to be one less than the ad-
dress of the beginning of the next line.
It can be many less. Simply by chang-
ing the beginning pointer of the en-
tire screen. you can move the image
through memory. You give it a start-
ing address. which is the address of
the point at the top left of the screen.
You give it a length and a modulo
value.

BYTE: That would be the whole width?
Miner: Right. Well. it would be the dif-
ference between what you're showing

(continued)

BIT -MAP
IMAGE
MANIPULATOR

SIMMER I BIMMERl
OMA !BUTTER)
CONTROL
LOGIC

SIMMER
CONTROL
REGISTERS

and the whole width. There's the
capability of six bit planes in this
thing. The bit planes can be grouped
into two playfields. and each playfield
has its own modulo and its own hori-
zontal-scroll register. the same type of
horizontal scroll ing as in the Atari
800. We thought several times about
giving each bit plane its own modulo.
but I couldn't think of any display that
would really make good use of that.
and the extra hardware didn't seem
worth it. All the pointers. modules.
backups. and the 18-bit adder that
makes them work-by doing both the
incrementing and the modulo
jumps-are on Agnus. as is all the con-
trol logic that sets the priority for
which one of those DMA channels
gets on the bus at which time.

AGNUS PRIORITY-CONTROL
LOGIC-OMA
Miner: The line coming from Agnus's
priority-control-logic block should
really be labeled DBR. which stands
for data-bus request. But it's really not
a request. it's a demand. because
Agnus always has control.

AMIGA'S CUSTOM CHIPS

BYTE: How do you determine who has
priority?
Miner: The whole priority structure is
really interesting. There are a lot of
things that have individual time slots
that occur. for example. during hori-
zontal blanking. All of the sprite data
transfer takes place during horizontal
blanking. and it's assigned definite
time slots. Each sprite has its own
time slot. so it can't interfere with the
transfer of the other sprites.

BYTE: So after each horizontal sync. there
are set chunks of time?
Miner: There are set chunks of time
for these data transfers. which include
the sprites; the audio. which has some
time slots there jfour audio channels!;
the disk. the refresh-all of these
things are assigned. And the display
itself. of course. is out here in the
display time. so in a sense it also has
fixed time slots; it can never compete
with these other things. This is all
highest. top-level priority. They don't
compete with each other because
they're always independent. You
could have them all at the same priori-

ty level without worrying about it.
And the stuff at the top priority is the
display stuff and data transfer that
goes in fixed time slots during hori-
zontal blanking.

The three other things that we have
to worry about are the coprocessor.
the bimmer. and the main CPU jcen-
tral processing unit!. That's the way it
goes. in that order. The coprocessor
is the next most important. It's a real-
time coprocessor that's used fre-
quently as a real-t ime engine to syn-
chronize with the beam for various
things like display and audio. It gets
any cycles that are empty that it can
use. but in order to not make it a hog.
it's an every-other-cycle machine at
the most. It's looking for empty cycles.
If it finds one. it will use it. but it won't
use two in a row.

BYTE: In the top priority. there are no empty
spaces?
Miner: Oh. there are some empty
spaces. especially in low resolution.
At low resolution. the display portion
has empty spaces. another key feature

(continued)

COLOR

COLLISION- • ••••••••••••••• ,
OETECT
LOGIC

PRIOR ITY
CONTROL
LOGIC

•••••• SELECT
DECODE

BIT PLANE
DATA
REGISTER

6

Figure 2: A block diagram of the Denise chip.

172 B YT E • NOVEM BER 1985

SPRITE
DATA
REG ISTERS

16

DENISE

BIT PLANE
PRIORITY
AND
CONTROL
REGISTERS

32
COLOR
REGISTERS

VIDEO
R

G

B

(4)

of the machine. Our normal resolu-
tion. what we consider normal low
resolution-320 dots across the
screen-leaves 50 percent empty slots
during the display.

BYTE: It puts out a dot and then it has a
little time?
Miner: No. putting out dots is con-
tinuous. I'm talking about memory
fetches to support those dots. which
have every other cycle empty.

BYTE: And theres enough time to switch over
and let somebody else use that memory cycle
and then switch back?
Miner: Oh. yes. An empty cycle is up
for grabs. always. And during hori-
zontal blanking. to maintain that con-
cept. we have every other time slot as-
signed to a sprite or an audio refresh.
That means that during horizontal
blanking. 50 percent of the memory
cycles are empty. So looking at the
whole time. approximately 50 percent
of the cycles are empty. The reason
we did this is because the 68000 CPU

AMIGA'S CUSTOM CHIPS

can use the bus efficiently only 50
percent of the time.

BYTE: Why is that?
Miner: Because of the way it's made
internally. It has to fetch an instruc-
tion. which is a memory cycle. decode
that instruction. and do some opera-
tion like storing data. The way it's set
up. the length of t ime-the number of
clock ticks it takes to decode the
instruction- is almost equal to the
length of time it spends on the bus.
So at the lowest resolution- 320 dots
across the screen- we match the pro-
cessor. and the processor thinks it's
got an empty bus because it inter-
leaves right in between those display
cycles. This is something that is
unique to this machine. And the pro-
cessor is as happy as a clam; it thinks
it's got full bus access.

If we go from 320 dots up to 640
dots. then that fills in the display time.
But what I just said is still true during
horizontal blanking. The microproces-
sor has the bus all the time that

LEFT
AUDIO
OUTPUT

RIGHT
AUDIO
OUTPUT

DISK
OUT IN

, " , " "-/ ""
~

DMAL
TD AGNUS OMA

• REG. -LOGIC - D TO A D TO A DATA PRE

RUPT-INTER
ID

TO 6
CODE -
8000 -

INTER
IN

EXT. -
RUPT -
PUTS-

~ • a:
UJ
:>

"' ~
-RGA a: • w

:>
"' -

INT.
CONTROL
LOGIC

INT.
STATUS
REGISTERS

•
}J:f· ·

CONV.
o a i

~ AUDIO ~

CONTROL
~ COUNTERS ~

DATA
REGISTERS

~ - --

·:·:·:·:·:· ::::::

Figure 3: A block diagram of the Paula chip.

174 BYTE • NOVEMBER 1985

CONV.
SEP COMP 2 a 3

AUDIO ~ DISK
CONTROL CONTROL
COUNTERS ~ LOGIC

DATA DATA
REG ISTERS REGISTERS

- - - ,_

::::::~:;::::::::::::::::;;E ~l!j r_w AOORFSS OF ~CJ LJ>

PAULA

-

Agnus lets it. The coprocessor is an
every-other-cycle machine. It goes
along using time slots as it can. based
on those rules.

The bimmer. however. is a real hog.
If a time slot is available. the bimmer
will use it. especially when it's in
what's called the nasty mode. Now
there is a mode where you can tell the
bimmer. "Hey. don't be so nasty. don't
take so many cycles. leave some for
the main microprocessor in case
there's an interrupt.'' Because if the
bimmer gets to operating heavily. it's
operating on a large area of screen in
a non-real-time way; churning mem-
ory up. it can hog a lot of bus cycles.
Of course. it's the right arm of the
main microprocessor. so it's doing
things that the main micro would have
to do otherwise. in terms of graphics
manipulation. Still. if you want to be
at all responsive to interrupts-and in
a multitasking machine like this. you
have to be responsive to interrupts-
you've got to have a mode where the

UART
IN OUT
"-/ "" --

REC TRN

UART
CONTROL
LOGIC

DATA
REGISTERS

I

POT
PORTS

/" , " / I' ""

(continued)

- - - ,_

BUFFERS
LATCHES
(BIDIRECTIONAL l

POT
CONTROL
COUNTERS

DATA
REGISTERS

(/)
UJ

' 0
0
0
UJ
0
UJ

"' 0 a:
f-
(/)

"' ~
:i;
;::

:::::::::::::::::: :::::::::::::::::::::: ::::::::::::::•

bimmer once in a while takes a pause
and says. "Okay. microprocessor. here.
I'll give you a couple of t ime slots."

SPRITES
BYTE: Were curious about the sprite
hardware.
Miner: Unlike the Atari 400 and 800.
we do not have "players·~sprites with
a vertical bit map. The idea was to
save vertical registers and vertical
comparisons in hardware and put
them into the software by requiring
the programmer to reposition the
image in the vertical bit map.

BYTE: That was a direct outgrowth of the
way you did the players in the Atari 2600.

·where they were only one line long and one
bit wide. You had to redefine them on the fly
for each video line. A logical extension would
be to make that two-dimensional.
Miner: It wasn't that so much. You
see. the 2600 had no bit map at all
except in ROM. where there were
some bit maps of sprite images. All
of the stuff was created on the fly. I
was really tight on register space- the
design rules were big- we were trying
to save as much hardware as we could

8520 (21
PIA

AMIGA'S CUSTOM CHIPS

and put functions into software. So we
came up with the idea that if we didn't
have any vertical comparators at all.
and no vertical position registers. then
what we would end up with is a sprite
that is not a real sprite in both direc-
t ions. but only in the horizontal direc-
tion. In the vertical direction it's a bit
map. That was the concept that we
patented in the Atari machine. We
don't have that here at all. We've got
a general-purpose sprite both hori-
zontally and vertically- a classical
sprite concept with a vertical start
position and a vertical stop position.

BYTE: The sprite is 16 bits wide. but it can
have any height?
Miner : It can be any height because
it can have any start and stop posi-
tion. but its height is not related to the
bit-map image like it is in the Atari 400
and 800. Its height is related to the
line count given by a start-control
register and a stop-control register.
There are eight sprite engines. Each
one is 2 bits deep (which allows for
four colors per sprite) and 16 bits
wide at low resolution (at the 320-dot
horizontal rate).

REGISTER ADDRESS DECODE

• •••• EXPANSION
BUS

CPU
6~000

RAM

BYTE: What choices do you frave for the four
colors? ls there a separate color table for each
sprite?
Miner: There's a separate color table.
but not for each sprite. There's some
sharing that has to go on. We've got
only 3 2 color registers. and those
have to be shared between the play-
fields and the sprites. Sometimes the
playfield uses I 6 of the colors and the
sprites have the other .I 6. Sometimes
some of them are shared. depending
on how many colors you're trying to
show on the playfield. Those eight
sprites can be combined to make four
sprites that are 4 bits deep with I 6
colors each. The total sprite bit resolu-
tion. however. does not go down to
as fine as the high-resolution playfield.

BYTE: How do you get more than eight
sprites?
Miner: You can reuse the sprite
engines any time you want.

BYTE: You mean you just have to reset them
between frames?
Miner: You reset them horizontally or
vertically. Once you finish using one

(continued)

AUDIO
VIDEO DISK POT
RGB UART PORTS

DENISE PAULA

OMA REQUEST (OMAL l

R /W BUS
CONTROL
LOGIC

CAS
256/512 kBYTES ---

DISPLAY RAM
EXPANSION

OTACK R/W

CLOCKS BUS DEMAND (OBRl

CLOCKS AM IGA

Figure 4: A block diagram of the Amiga's overall architecture.

176 BYTE • NOVEMBER 1985 Inquiry 344 -

vertically. you have to wait one line
time before you can use the same
engine again vertically. You can use
the same engine over and over again
on a horizontal line if you can get
enough microprocessor or copro-
cessor time to go in there and rewrite
the registers.

DIGITAL RGB, ANAI.OG
RGB, AND NTSC
BYTE: When you put out RGB jred-green
bluel data. how does it come out?
Miner: It comes out as 4 bits. 4 bits.
and 4 bits.

BYTE: And that's how RGB monitors nor
mally take their information?
Miner: Off chip it goes into a ladder.
There are three groups of 4 bits com-
ing right out of the 3 2 color registers.
and then there's a four-resistor ladder
on each one of those that converts it
into three analog values. That's what
goes to the monitors.

BYTE: Then the values of that analog
data-which you've changed from the digital
data-determine how strong each of the RGB
guns is when it's firing at a particular
point?
Miner: Yes. on the so-called analog
RGB. There are two kinds of RGB:
digital and analog. This is important
to stress because IBM talks about 16
colors. but what IBM really means is
two shades of eight colors. and those
two shades are always the same color.
There's no way to change them. That's
what's called digital RGB. or RGBi. It's
got red on and off. it's got green on
and off. it's got blue on and off. and
it's got an intensity level that deter-
mines brightness or darkness for each
one of those. It's a four-wire control.
but it's completely digital. We put that
out too. in order to be compatible. but
we also put out the analog RGB. which
has 4 bits. 4 bits. and 4 bits. into lad-
ders. so you get 16 values of red. 16
values of green. and 16 values of blue.
It's equivalent to 212 total colors and
luminances~

BYTE: So on the analog output. you could
have any number of bits that you wanted?
You could put out I 0 bits on each line?

178 BYTE • NOVEMBER 1985

AMIGA'S CUSlDM CHIPS

Miner: Yes. if you had big enough
registers. In fact. that's probably one
of the things we'll be expanding in the
future chip set.

BYTE: Why did you choose 4 bits in the first
place?
Miner: Originally. this wasn't going to
be RGB; it was going to follow the
NTSC !National Tulevision System
Committee! standard. NTSC works on
intensity. hue. and saturation. Color
and luminance. YIO is what they call
it. The Y is the intensity. and the I and
the 0 define a vector that determines
the saturation. Having 4 bits of each
was about the best we could tackle in
terms of having on-chip ladders that
would take the 4 bits for each one of
these and convert them into an actual
phase angle.

BYTE: So that ladder is on Denise?
Miner: No. it was when we had the
YIO; when we were emphasizing
NTSC. we had a ladder on board.
Then we deemphasized it. We found
a Motorola chip that did a good job
of converting RGB into NTSC. We
needed the extra room on the Denise
chip for extra resolution on the color
registers. so we dropped the YIO
NTSC completely. But we've still stuck
with the 4. 4. 4 bits. Also. you've got
a real pin limitation on a chip like this.
We tried to keep the chip simple and
low-cost to manufacture. and on-chip
ladders take up a lot of area. They're
notoriously inaccurate. and you can
buy I percent resistors external for a
penny apiece.

BYTE: Is there still NTSC output from the
Amiga?
Miner: In the box there is. yes. But not
in the chips.

B IT PLANES
BYTE: Explain the bit planes to me a little
better. You've got ones and zeros in memory
and you overlay them; you look at a group
of them simultaneously to determine what the
color is of something that's actually on the
screen. Do you have an address for the begin
ning of each bit-plane area?
Miner: Yes. The concept of bit planes
is very deeply ingrained in this archi-

tecture. There are really two conflict-
ing display concepts here. One is pixel
addressing; the other is bit-plane ad-
dressing. We've chosen bit-plane. One
reason for our decision is that we
wanted to do a very efficient area-fill.

BYTE: You mean filling in a particular wne
on the screen?
Miner: Yes. and that's done quite well
and efficiently with bit-plane address-
ing on a single bit-plane basis. We
wanted to have a lot of variety in the
number of bit planes that you can
specify. We wanted to have our two
separate playfields-each one with a
controllable number of bit planes in
it. We didn't want to waste a lot of
data transfers if we had fewer bit
planes than others did. So we decided
not to transfer data on a pixel basis.
which wastes a lot of transfer time if
you don't use all of your pixels or all
the bits within a pixel. Even if you
don't use them all. you still have to ad-
dress them. and it still takes a memory
cycle. When you're bit-plane-oriented.
if you've got only two bit planes in-
stead of eight. since you're moving
data out of a single bit plane only. it
doesn't matter because you're using
all the bits that come across. That was
really why it came about: to increase
the efficiency of data transfers and the
sprite transfers for different numbers
of bit planes and different organiza-
tions.

BYTE: When the bimmer is operating on its
three sources and sending to its destination.
is it operating on pieces of bit planes?
Miner: It's always operating on only
one bit plane at a time. If you want
to do a picture with multiple bit
planes. you just do the same routine
and point it to where that other bit
plane is located.

BYTE: But it can't take a chu.nk and move
it from bit plane number I over to bit plane
number 2?
Miner: It could. sure. But that isn't
normally the way it's done. Usually
you define the bit planes. and you
operate on them as though they were
images one behind the other.

(continued)

AMIG~S CUSTOM CHIPS

BYTE: Tfris screen that you nave that's look
inq at a section of tfre larqe imaqe is actually
looking at tfre bit planes stacked on top of each
other?

Miner: Memory is contiguous. right.
So the bit planes are really located
separately in memory. but since
they're fetched by the bit-plane OMA
channel. a word at a time from each
bit plane. they're placed into these
holding registers in Denise. Then
when bit plane number I comes
along. they know they've all been

Miner : No. the bit planes are never
really stacked.

BYTE: Well. in memory then. because mem
ory is just stretched out.

Faster CAD Input
The GTCO DIG I-PAD is a fast trac-
ing device, a function the mouse
can't perform at a ll. It's an absolute
screen pointing device for direct
cursor control. It can also provide
direct, simple menu selection. The
GTCO DI GI-PAD is a d ig itizer
tablet in sizes including 12'x 12',
11'x17', 20'x20', 24"x36", 36'x
48 • and 42"x 60'.

TheDIGI-PADiseasilyinterfaced
to PCs and is compatible with most
PC/CAD software, such as AutoCAD™
and CAD PLAN™.

180 BYTE • NOVEMBER 1985

The digitizer surpasses all
other input devices for tracing and
pointing and menuing. GTCO
digitizers use patented electromag-
netic technology for years of silent,
maintenance-free operation.

Ask your dealer about the
G TCO DIG I-PAD.

'" D!Gl·PAD and Micro DIGI·PAD are registered
trademarks of GlCO Corporation.

™AutoCAD Is a trademark of Autodesk Inc.
™CADPLAN ts a trademark of Personal CAD

Systems, I nc.

Inquiry 171

filled. so you simultaneously convert
them all from parallel to serial and
start squirting them out. While they're
squirting out. the parallel's being
reloaded to get ready for the next
squirt-out. As they come out. you're
looking at them as though they were
a pixel. at a single instant in time.

BYTE: How does barrel sfriftinq fit in?
Miner: The bimmer's barrel-shift capa-
bility lets you move images on pixel
boundaries. If it weren't for the barrel
shifter. the bit-plane concept wouldn't
work at all. When you're doing pixel
addressing. since each pixel has its
own address. to move stuff by one
pixel all you have to do is increment
the address by I. There's no problem
in moving stuff-using pixel address-
ing-on arbitrary pixel boundaries. But
when you're using bit-plane techniques
like we are. where each word repre-
sents a whole bunch of pixels from
one bit plane. then to move that image
within a word. within a single pixel
boundary. you've got to shift it by an
arbitrary number from 0 to 15.

BYTE: Even across words?
Miner: Yes. The barrel shifter allows
you to do that here. As the data is
transferred from source to destina-
tion. you can move it by an arbitrary
number of pixels.

SCROLLING
BYTE: Could you explain tfre scrollinq
process?
Miner: The bit planes need the hori-
zontal-sync-counter output bits
because they have to fetch over and
over again across the line. Also. they
need to do scrolling. The bit planes
have a delay capability called horizon-
tal scrolling built into them. This hard-
ware scrolling actually delays the
fetching of data so that it shows later
on the screen. To do that. it's got to
have a counter that causes 0 to 15 bits
of delay.

What shows on the screen is the
size of the screen display. The picture
in memory can be quite a bit larger
than that. and it can have multiple bit
planes. There are two ways to change

(continued)

what shows on the screen. One is to
horizontally scroll smoothly 0 to l 5
bits within a word. The other is to
change the pointer a whole word
value. So you can relocate the thing
just by changing the pointer. If you
come to the edge of the big picture.
then you've got to do something in
the software-block moves and so on.

USE US •••
TO SAVE A IUNDLEll

AMIGA'S CUSTOM CHIPS

COLLISION DETECTION
BYTE: What about the information feeding
over to the bit-plane controls and the whole
interaction of bit planes and sprites? Collision
detection has nothing to do with what shows;
it just tells you when something has happened.
right?
Miner: Exactly. Collision detection is
looking in real time at the simulta-

W e sOYe educational. business and
lnstltutlonol buyers huncteds or even thousands of

dollas on their computer supply needs.
HOW ABOUT YOU?

W e deal only In Rrst quality. guaanteed products -
all in stock for Immediate shlpmentll

BULK DISKETIES
JANUS 69¢EA<H 79> f~:~· 'r EACH to ·t·

FAOM .. SS/DD l 00 LOT OS/DD . . l 00 LOT

VERBATIM 85¢eACH
FAOM . . SS/DD 100 LOT

$1 OS eACH t ..
OS/DD . 100 LOT~"

SENTINEL 75¢EACH 85¢EACH
FAOM .. SS/DD 100 LOT DS/DD . . 100 LOT

OTHER MAJOR MANUFACTURERS AVAILABLE, CALL ••

SENTINEL ® 3-1 /2" DISKS $189EACH COLOR DISK ~ for Macintosh & HP.. . • • • • • • • • • • • • • • • 100 LOT

55tPO 89(~~Lor l iiJ Verbatim 'J
05/1)0 ... 99(~LOT -~ ~::mES ~- T300 $49! A300 $449 EA

DISK STORAGE BOXES
(many to choose from)
Including our OX8SA -

~~~~00-~~~- ......•........... . s1295
EA 

PRINT WHEELS 
Dioblo ........... .. ..... low as SS.45 
Qume ............ .. ... low as 5.45 
Wong ................. low as 6.45 
Royal ...... . .......... low as 14.50 
Nakajima .............. low as 13. 95 
IBM Displa,iwriter . . . . . . . low as 15. 95 
Ricoh . . . . . . . . . . . . . . . . . . low as 24. 95 
Sliver Reed . ............ low as 12. 95 
All TVPES & STVLES 
IN STOCK. 

PRINT RIBBONS 
PAICES PEA DOZEN RIBBONS 
Epson MX 80 ............ low as $3.49 
Epson MX 100 . . . . . . . . . . low as 4. 99 
Dioblo .............. . . . low as 3.49 
lmagewriter . . . . . . . . . . . . low as 3. 99 
All ABOVE AVAllABLE IN COLOR 
AS WElll WE STOCK RIBBONS FOR 
All MAJOR BRAND PAINTERSlll 
CALL TODAYll 

CALL FOA VOLUME DISCOUNTSlll 

TeleMedia 
780 Trimble Road, Suite 608, San Jose, California 95131 
800/437-0900 • 800/43S.9700 in CA 
P.O.'s accepted from lnstltutlonol. EducO(lonol & Gover1YT1ent Accounts. 
Dealer and Distributor Coils ae Welcome. 

182 BYTE • NOVEMBER 1985 

-~ C.O.D. ADD $2.00 

SUPPlY ORDERS 
$25.00 MIN. 

Inquiry 340 

neous occurrence of objects. Sprites 
are on the 16 lines out of the sprite-
serialize block. and bit planes are on 
the six lines out of the bit-plane-
serialize block. Any simultaneous. 
real-time occurrence of more than 
one object at the collision-detection 
logic will be detected and stored in a 
latch in the collision-storage register. 
The program or the programmer can 
read this back out any time. 

BYTE: How do you know when there's an 
object here if there's always some sort of data 
on the line? If this line is low. then do you 
assume that it's not data? 
Miner: Right. Zero is always nothing. 
zero is transparency. 

BYTE: But collision is more complicated than 
just "There are two things here." 
Miner: Collision control is quite com-
plex . We've got an ability in this 
machine that I've never seen in any 
other machine before. Thke a four-bit-
plane playfield. Here's a sprite com-
ing along. It can collide with that 
playfield by virtue of hitting any of 
those planes. This whole architecture 
is bit-plane-oriented rather than pixel-
oriented. I can collide with any bit 
plane or mask any bit plane from the 
collision. Or l can actually invert the 
polarity of the bit plane with which I'll 
collide. The collision-control register 
decides which bit planes get looked 
at by the coll ision monitor and with 
what polarity. You can be very picky 
about what kinds of playfield the 
sprites collide with. By using all bit 
planes and getting the right polarity. 
you could have a collision with any in-
dividual color. 

BYTE: With 128 virtual sprites as a pos
sibility and the various bit planes. it seems 
like you'd have an enormous number of things 
for the collision-control register to keep track of. 
Miner: Well. the collision-control 
register doesn't keep track of those 
virtual sprites. It only keeps track of 
real sprite-engine collisions. For real 
sprites. you use the collision-control 
register every vertical-blank time. and 
if a sprite collided during the previous 
frame. then you know that a collision 
occurred. • 




