
BYTE West Coast

The Future of Software
Design

Industry looks to software as the source of the next wave
of innovation in microcomputers

Software, after years of taking a
backseat to hardware, has finally
come into its own. Today there is
general acknowledgment of soft­
ware's importance. It is the bridge
between the machine and the user­
the tool that brings the power of the
computer to the user. And software
is defining today's crucial information
issues.

Instead of the emphasis of past
years on building better and more
powerful machines, the emphasis
now is on how to harness the full
power of the existing hardware
through improved software design.
The promise is that the existing
machines could do the job much
better-more easily, more efficient­
ly-if software were better designed.

And this promise, in turn, leads
straight into several key issues that
are facing software developers today.
What, exactly, constitutes a better
design? Of the various approaches
that software design can take, which
will be most effective in helping users
access the full potential of their
machines?

Currently software developers face
five major issues. None has easy

This month the BYTE West Coast editors
relinquish their forum to Bill Gates. As chair­
man of the board of Microsoft Corporation, Gates
directs the efforts of one of the microcomputer
industry's major software houses and has some
definite opinions about the arrival of the soft
revolution.

by William Gates
answers. The stand that each of the
major players in the field chooses to
take on these issues-and the degree
to which the ultimate judge, the user
marketplace, accepts each stand-will
determine the direction of software
design.

A great deal of money will be in­
vested in these choices. The cost of
developing a fully integrated family
of applications is enormous. Apple
talks of investing $50 million to
develop a complete applications
family; Xerox views the job in terms
of hundreds of man-years. Therefore,
each software developer is going to
have to take a good hard look at each
of these issues and make its choice
with great care. A wrong choice will
be costly at best; at worst, it could
spell financial disaster.

In this article, I'll examine today's
central software issues, analyze the
pros and cons of the possible choices
within each issue, and hazard some
guesses as to which directions will
prove to hold the key to the software
packages of the future .

Integration
Integration has been a byword in

the software industry for some time.
But the issue here is not superficial
integration. I am not talking about
taking various products and calling
them by similar names. I am not even
talking about moving the data back
and forth between the products
through some sort of low-level

numeric description, where special
commands must be given each time
the user wants to move data from one
application to another.

Such an approach, although better
than no integration at all, presents
the user with two major problems.
First, special commands take con­
siderable time and effort, both in the
initial learning and in their applica­
tion each time the data is to be
moved. Worse yet, with this type of
integration, important information
about the data is lost. Take sales data,
for example. In a particular applica­
tion, tisers may have described sales
by time period (daily, weekly, or
monthly), by sales unit (sales rep,
product line, or division), and by the
form in which they want to print it.
With today's level of integration, if
they try to move this data from one
application to another, they general­
ly will lose some of these important
descriptors. The data will be devoid
of its full structure.

The two key features of real integra­
tion, then, are that it must capture all
data descriptors and it must be auto­
matic. That is, to get two applications
to work together, there should be no
need to continually move the data
back and forth manually. If, for ex­
ample, users need to combine data
from their balance sheets and their
income statements to do monthly
reports, they should be able to
specify what data they want the
reports to include and in what format

Auguot 1983 © BYTE PubUaotioN Inc 401

it should be printed. The rest should
be automatic-graphs, charts, and
all-without any need to go back in
and reinput or redescribe the data.

This is how fully integrated soft­
ware will work. But the big question
is, how do you get there? Basically,
two possible approaches exist: either
build one single application that does
everything or else find better ways of
moving data between separate appli­
cations.

The first approach has a definite
appeal, in view of the fact that no one
has yet developed a way of moving
data between applications in a high­
level form. But there are three signifi­
cant drawbacks to the idea of build­
ing a single applications package that
does it all.

First, there is the problem of
specialized expertise. Even if one
software developer had the expertise
to build a complete set of generic
applications-time scheduling, proj­
ect scheduling, database develop­
ment, electronic spreadsheets, and
the like-it would be impossible to
find a single vendor who had the ex­
pertise to build all the necessary ver­
tical applications. And vertical
packages specific to different profes­
sions or companies are going to be a
major segment of the software
market. This need, then, points to
the importance of developing an ap­
proach to integration that lets dif­
ferent parties with specialized types
of expertise come in and provide
specific vertical applications of the
various packages.

A second problem with the ap­
proach of developing a single ap­
plication that does it all is that it re­
quires the selection of a single data
structure. Because a data structure
that is ideal for one application may
be clumsy and inefficient for another,
the net effect of this approach is that
it compromises individual applica­
tions. For example, an in-memory
data structure that is well suited to a
spreadsheet application may be poor­
ly suited for a database package. In
fact, it may be totally unusable. If
users want to develop graphs from
the data stored in all the separate cells
of a spreadsheet, for example, and
they have to move the cells around

402 A t 1983 IS) BYTE PublicatioN Inc

and give a special set of commands
each time they need graphs drawn
(or, alternatively, find a macro string
that will accomplish the same end),
they are not going to be likely to use
the application very frequently.
Clearly, different applications require
different data structures to make
them easy to use.

The third difficulty with the single­
application approach is that the com­
mand structure could easily become
overstrained. The number of different
commands and decision trees could
become a significant problem.

For all of the above reasons, Apple
and Microsoft are in agreement that
the best solution is to have multiple
products that can easily pass data
back and forth. This doesn't mean
that the products cannot be priced as
a single package, or that they can't all
be on the screen at one time. But it
does mean that they will be based on
qifferent data structures and will use
different command structures.

User Interface
A second crucial decision area fac­

ing software developers today in­
volves the development of standards
for user interfaces. Developers are in
general agreement on some of these
issues. For example, it is generally ac­
cepted that packages should include
online "help" files so that users can
immediately call up a piece of help
text that is designed for the specific
context in which they find
themselves. Similarly, menus written
in standard English and full-sentence
prompts are generally accepted .
Visicorp, for example, is moving away
from the use of coded commands (I)
and toward the use of English words.

The big issue today in the area of
user interfaces is the introduction of
graphics. To many people, graphics
implies the drawing of bar charts,
isometric charts, etc. But the graphics
issue is, in reality, far broader than
that.

The question is how to present data
on the screen. So far, companies have
been fairly confined in how they use
the screen to present data. For a long
time, they could only put characters
(and monospaced ones, at that) in
specific positions on the screen. This

may not seem like a problem at first
glance. But stop and think for a
minute: if every time you went to use
a piece of paper or a chalkboard you
had to take little letters and place
them where you wanted them,
wouldn't you find this approach to be
restricting? You might find yourse~
using the paper or chalkboard a great
deal less than you now do, when you
have the freedom to put arbitrary im­
ages there in any form.

The new graphic technology, with
its use of pixels and bit-mapping, is
bringing this same richness to the
computer screen. The ability to view
the screen as a piece of paper and to
put arbitrary images on it means that
graphics are going to be used for a
great deal more than just drawing
graphs. Icons, for example, tell the
user what is happening in a much
more compact and compelling way
than words. Cursor displays to show
users their positions are another form
of visual feedback. For example,
when users are deleting something,
the screen could show scissors mov­
ing around the material being
deleted. Even graphs and diagrams
will be revolutionized by the new
graphics technology because the time
and effort required to produce them
will be significantly reduced. In fact,
what the new graphics technology
represents is a revolution in user
interfaces.

The bottom line is that graphics are
going to be a standard part of all com­
puters. No machine that costs more
than $1000 will be without a built-in
bit-map graphics screen. And the
software analog of that hardware
statement is that, one year from to­
day, no decent application software
family, no decent language family,
and no decent operating system will
be without extremely high level sup­
port for this type of graphics capabili­
ty. It will be no small task for the soft­
ware developers to achieve this
graphics integration, but it is a
necessary task. Furthermore, the
graphics capability is not going to be
in the form of add-on packages that
users go out and buy after they have
bought their computers: it will be
part of the definition of the machines
themselves. As such, it will require

very high level primitives to allow the
user to easily access the graphics cap­
abilities.

As the above observations indicate,
software developers are going to have
to agree on some user-interface stan­
dards to allow the full power of this
graphics revolution to be felt. First,
they will need to develop some stan­
dards for incorporating the graphics
capability into the machine. Apple is
already moving in this direction with
its development of a strong operating
system as a foundation for such built­
in features . Second, they will need to
agree on some high-level operating
system commands to make the
graphics capabilities readily accessi­
ble to the user.

Data-Storage Metaphors
Selection of the most appropriate

data-storage metaphor is one of the
toughest issues facing the software
industry today. Basically, this term
refers to the way the user perceives
the storage of data within the system.
Take Apple's Lisa system, for exam­
ple, which is supposed to be capable
of being learned in 20 minutes.
Learning the spreadsheet application
is going to be easy only for people
who are used to working with
formulas-people who like formulas,
who understand thein, and who
understand how they can work
together in an interdependent
fashion. A data-storage metaphor
that is based on placing formulas in
cells of a spreadsheet is never going
to be easy for most people to iearn,
regardless of how the system is
dressed up with easy-to-remember
icons, simple English commands,
and so forth.

Xerox, on the other hand, uses a
linear, document-oriented metaphor.
It includes different types of frames
(text, graphics, and so fort~), but the
orientation is still that of a document,
which is scrolled through in linear
fashion.

The direction that Microsoft is tak­
ing is toward a database metaphor.
We undertook a study within our own
offices to look at the ways people ask
about and record data. Our findings
showed that the data itself is the key;
people generally take a database ap-

proach in recording and accessing in­
formation. Someone wanting sales
figures for the previous year, for ex­
ample, would not create a spread­
sheet with empty cells and then send
it to the accounting department to
have the cells filled in . Rather, the
person would start with the data that
he had and request the additional
data needed to complete the picture.

You can see that the metaphor
question is entirely separate from
concepts such as graphic icons or
windows. It is also a much more dif­
ficult issue to deal with. The effort,
however, will definitely be worth our
while : it is in this area, more than any
other, that we can make the break­
throughs that will allow the ordinary
user to view the computer as simple.
A software approach built around the
right metaphor will allow users to
walk up to the machine, immediate­
ly see the data that they have put into
the system, and then easily choose
the applications that will allow them
to view that data in the formats they
need-all without having to refer to
files, spreadsheet cells, formulas, or
any other complex constructs.

Tying Personal Computers
to Mainframes

A fourth major concern that soft­
ware developers need to address is
the growing interest in tying personal
computers into mainframes. Because
of the significant differences among
mainframes, this is no simple matter.
Mainframes-even those made by
the same vendor-have different file
handlers, different communications
software, and different operating
systems. The IBM 370 alone has at
least six major operating en­
vironments and, within each of
those, multiple databases. Creating
the software that will allow a per­
sonal computer to tie into such a
machine will not be a trivial task.

The problem is not simply tying
two machines together. That has
already been done: software exists
that will turn the personal computer
into a terminal, ignoring its local
intelligence.

The difficulty is to create a method
of tying the two together that will
allow automatic database querying.

Users should not, for example, have
to know JCL (job-control language) to
access data from the mainframe. Nor
should they need to learn a complex
set of command structures. Rather
they should be able to query the com­
puter for data anywhere in the
system and have the system itself use
its intelligence to retrieve that data.
In fact, the way the data was initially
described in the dictionary should
tell the system where to go to get it­
whether to go, for example, to the
mainframe, Compuserve, or Dow
Jones. Resolving this software prob­
lem will not be easy, but it must be
accomplished; the increasing use of
personal computers in large organiza­
tions makes this a central concern
today.

Expanded Definition
of an Operating System

An important development that
you will be seeing in the near future
is a greatly expanded definition of an
operating system. Microsoft, for ex­
ample, as the vendor of one of to­
day's most popular operating
systems, MS-DOS, is planning to in­
corporate an increasingly higher
number of functions into that system.
Graphics capabilities, user-interface
capabilities, networking-all will be
incorporated into the operating
system. Instead of these functions be­
ing considered add-on products, they
will automatically be a part of every
machine. This means that applica­
tions writers will be able to assume
that these functions are there and
design their packages accordingly.

The Soft World Is Here
As the above observations indicate,

the innovation taking place in the
world of computers today originates
with software. No longer do you
need to go out and build better, more
powerful hardware to achieve pro­
ductivity improvements: you simply
develop a new software package, and
people can put it to use immediately
in their existing machines. The revo­
lution is here-and it is soft .•

William Gates is chainnan of the board of til e
Microsoft Corporation (10700 Northup Wa y,
Bellevue, W4. 98004) .

August 1983 © BYrE Publications Inc 403

	Cover

	Index

	Editorial

	Microbytes

	Letters

	Ciarcia's Circuit Cellar

	The C Language

	The C Language and Models for Systems Programming

	A C Language Primer

	Comparing C Compilers for CP/M-86

	Five C Compilers for CP/M-80

	Nine C Compilers for the IBM PC

	Managing Software Development with C

	The UNIX Tutorial part I: An Introduciton to Features and Facilities

	A Survey of Unix and C Resources

	What is a Software Tool

	The Unix C Compiler in a CP/M Environment

	Annotated C

	Chisel Your Code with a Profiler

	A New Shape Subroutine for the Apple

	The Debate Goes On

	The IBM PC and the Intel 8087 Coprocessor

	Cross-Reference Utility for IBM PC BASIC Programs

	Curious Coordinateds for Computer Graphics

	A Gauss-Jordonj Elimination Method Program

	The Future of Software Design

	The 8086 An Architecture
for the Future
Part 3: Instruction Set Continued
	Book Reviews: CBASIC User Guide

	BYTES's Bugs

	Booke Reviews

	User's Column: Epson QX-I0, Zenith Z-29,
CP/M-68K, and More

	Epson QX-I0, Zenith Z-29,CP/M-68K, and More
	Epilogue: A Look at Valdocs

	Voice Lab
Part 2: Menu-Driven Routines for Digital
Speech Synthesis and Analysis

	Help in Apple III Pascal

	Books Received

	Ask BYTE

	Clubs and Newsletters

	Software Received

	Event Queue

	BYTE's Bits

	What's New?

	Unclassified Ads

	Reader Service

