
The Smalltalk-80 
Virtual Machine 

The Smalltalk-80 system is a 
powerful system that encourages the 
development of large applications 
programs . The system contains a 
compiler, a debugger, a storage man­
agement system, text and . picture 
editors, and a file system. It also con­
tains a highly interactive user inter­
face based on graphics that include 
overlapping windows. 

Typically the task of bringing up 
such a powerful system on a new 
computer includes writing code to im­
plement these pieces. The Small­
talk-80 system is different in that 
most of these pieces are written in 
Smalltalk-80 itself. The part that can 
be written in Smalltalk-80 is called 
the Smalltalk-80 Virtual Image, and it 
includes the compiler, debugger, 
editors, decompiler, and the file sys­
tem. 

Smal ltalk - 80 Virtual Image 

(300 K bytes) 

Sma lltalk-80 Virtual Machine 

(10 K b)' tes) 

Figure 1: The Smalltalk-BO Virtual 
Machine . Most of Smalltalk-BO is written 
in Smalltalk-BO (the Virtual Image) , leav­
ing only a small amount of code that has 
to be rewritten for each processor on 
which the language is implemented (the 
Virtual Machine). 
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The remaining part of the Small­
talk-80 system is defined in terms of 
an abstract machine called the Small­
talk-80 Virtual Machine (see figure 1). 
The Smalltalk-80 compiler translates 
source code into machine instructions 
for this virtual machine, rather than 
translating directly into machine in­
structions for a particular hardware 
machine. The task of bringing up a 
Smalltalk-80 system on a new 
"target" computer consists only of 
implementing (writing a program to 
simulate) the Small talk Virtual Ma­
chine on the target computer. 

In this article, we will present an 
overview of the elements needed to 
implement the Small talk Virtual Ma­
chine. These elements are: 

• the Storage Manager 
• the Interpreter 
• the Primitive Subroutines 

Background 
A Smalltalk-80 system is made up 

of objects that have state and exhibit 
behavior. Their state consists of the 
values of both named and indexed in­
stance variables (which we will call 
fields), and their behavior is exhibited 
through sending and receiving mes­
sages. Objects are members of 
classes. 

Classes may be subclasses of other 
classes-that is, they may inherit at­
tributes from other classes. Program­
ming in Smalltalk-80 is done by defin­
ing the procedures, or methods, that 
are executed when objects receive 
messages. Typieally, messages are 

sent to other objects to invoke their 
methods. Sometimes messages invoke 
primitive (machine-code) subroutines 
rather than Smalltalk-80 methods. 

From this brief description of 
Smalltalk-80, we can consider the in­
formation needed to implement each 
of the three elements of the Small talk 
Virtual Machine: 

1. To implement the storage 
manager, we need the information 
necessary to represent objects in the 
computer's memory. This informa­
tion consists of the amount of mem­
ory that each object will occupy, 
which can be computed from the 
number of fields the object has, and 
the representation of fields in mem­
ory. Objects that describe classes de­
fine the number of fields their in­
stances will have, so we also need to 
know how this number is repre­
sented . With this information, we can 
design a storage manager for objects 
in a Smalltalk-80 system that will : 

.fetch the class of objects 

.fetch and store fields of objects 
• create new objects 
.collect and manage free space 

2. The interpreter executes the ma­
chine instructions of the Smalltalk-80 
Virtual Machine. The information 
needed to design the interpreter is a 
description of these machine instruc­
tions, called bytecodes (the idea is 
similar to Pascal p-codes). The byte­
codes are contained in methods, so 
we also need to know the representa-
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Who's Who 
The design of the Smalltalk-80 Virtual Machine is based on previous Smalltalk 

systems implemented by the Learning Research Group at Xerox PARe. The original 
bytecode interpreter design was made for Smalltalk-76 by Dan Ingalls (Ingalls, Dan. 
"The Smalltalk-76 Programming System: Design and Implementation. " In Fifth An­
nual ACM Symposium on Principles of Programming Languages, 1978, pages 9 
through 16). Smalltalk-76 was implemented on the Xerox Alto by Dan Ingalls, Ted 
Kaehler, Dave Robson, Steve Weyer and Diana Merry, on the Xerox Dolphin by 
Peter Deutsch, and on the Xerox Dorado by Bruce Horn . Tiny Talk was implemented 
on a Xerox microcomputer by Larry Tesler and Kim McCall (McCall, Kim and Larry 
Tesler. "Tiny Talk, a Subset of Smalltalk-76 for64KB Microcomputers. " In Proceed­
ings of the Third Symposium on Small Systems, ACM Sigsmall Newsletter, Volume 
6, Number 2, 1980, pages 197 through 19B). Smalltalk-78 (a revised version of 
Smalltalk-76 similar to Smalltalk-80) was implemented on the Xerox microcomputer 
by Dan Ingalls, Ted Kaehler, and Bruce Horn, on the Xerox Dorado by Jim Stamos, 
and on a Norwegian microcomputer (under a research license from Xerox) by Bruce 
Horn. Smalltalk-80 has been implemented on the Xerox Dorado by Peter Deutsch, 
on the Xerox Dolphin by Kim McCall, and on the Xerox Alto by Glenn Krasner. The 
designs of these systems were made by the implementors and other members of the 
Learning Research Group. 

tion of methods. From this informa­
tion we can decide how the inter­
preter will fetch and execute byte­
codes and how it will find methods to 
run when messages are sent. 

3. The last piece of information we 
need to know is which messages will 
invoke primitive subroutines; that is, 
which methods we must implement in 
machine code to terminate the recur­
sion of message sending and to op­
timize performance. 

Before we go into more detail 
about these elements of a Small­
talk-BO Virtual Machine implementa­
tion, here are a few typical figures 
that will provide a little "reality" to 
implementors. For the systems that 
we have implemented at Xerox, the 
Smalltalk-BO Virtual Image consists 
of about 300 K bytes of objects. Our 
typical implementation of the Small­
talk-BO Virtual Machine is 6 to 12 K 
bytes of assembly code, or 2 K micro­
code instructions plus 10 K bytes of 
assembly code . Of this, about 40% is 
in the storage manager, 20 % in the 
interpreter, and 40% in the primitive 
subroutines. Our average is about 
one person-year to implement a fully 
debugged version of this code. 

The Storage Manager 
Although the storage manager 

tends to be the largest and most com­
plex of the three parts of a Small-

talk-BO implementation, the functions 
it provides are few and relatively sim­
ple to understand. 

Everything In a 
Smalltalk-80 system Is 

an object. 

Everything in a Small talk system is 
an object, so from a storage point of 
view memory needs to be divided 
into blocks, one for each object, plus 
a pool of memory that is not yet used . 
Every time a new object is created, a 
new block of the appropriate size 
must be found for that object: when 
objects are no longer used, their 
memory block may be returned to the 
pool (see figure 2). 

A special entity called an object 
pointer is assigned to each object. If 
an object pointer were the actual core 
address of the memory occupied by 
that object, then there would be fast 
access to an object given its pointer. 
However, in the Smalltalk-BO system 
the object pointer is an indirect 
pointer to the object through a table 
kept by the storage manager. This 
allows the storage manager to move 
an object around in memory without 
affecting any object that refers to it. It 
also insures that the storage manager 
is the only entity in the system con­
cerned with (and allowed to change) 
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Figure 2: Objects and memory usage in 
Smalltalk-BO. Each Smalltalk-BO object 
has an object pointer that points to a 
block of memory that describes the ob­
ject. When an object is no longer used, its 
memory is made available for use. 
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Figure 3: Typical object represen tations 
in Smalltalk-BO. 

the actual memory . In the Small­
talk-80 Virtual Image, object pointers 
are single 16-bit words. This allows 
for 64 K objects in the system; these 
objects may take up much more than 
64 K words of memory. 

Since an object's class and fields are 
themselves objects, we can see that 
the block of memory corresponding 
to an object contains the object 
pointer of the object's class plus the 
object pointer for each of the object's 
fields. The storage manager also 
keeps the length of the block as one 
word of the block . This means, for 
example, that the block correspond­
ing to an ·object that is an instance of 
class Point (see figure 3) will have : 

.one word that says this block is four 
words long 
• one word that is the object pointer 
of the object that describes class Point 
.one word that is the object pointer 
of an object that is the x-coordinate 
field of the point 
• one word that is the object pointer 
of an object that is the y-coordinate 
field of the point 

Similarly, the block corresponding to 
an object that is an instance of class 
Triangle will have : 

• one word saying this block is five 
words long 
• one word that is the object pointer 
of the object that describes class 
Triangle 
.one word that is the object pointer 
of an instance of class Point, repre­
senting one vertex field 
.one word that is the object pointer 
of an instance of class Point, for the 
second vertex field 
• one word that is the object pointer 
of an instance of class POint, for the 
third vertex field 

For performance optimization, the 
values in the fields of some objects, 
such as instances of class ByteArray, 
will be interpreted as the numerical 
values themselves, rather than as 
object pointers . The block corres­
ponding to the byte array containing 
the elements 1, 2, 3, and 4, in order, 
will have: 



• one word saying this block is four 
words long 
.one word pointing to the object that 
describes class ByteArray 
• one byte encoding the number 1 
• one byte encoding the number 2 
• one byte encoding the number 3 
• one byte encoding the number 4 

We will represent all objects as hav­
ing fields interpreted as object 
pointers or numerical values, not 
both. Objects may store nume'rical 
values as bytes or words, but not 
both. 

As we have mentioned, the objects 
that describe classes also need to 
represent the form of instances of 
those classes. The essential informa­
tion is the number of fields the 
instances will have, and whether 
these will be pointer or nonpointer 
fields ~ For example, the describer of 
class Point says that its instances will 
have two fields (x- and y-coordinates) 
and that these will be pointers (see 
figure 4). The describer of class 
ByteArray says that its instances may 

(Lengthl 

(Class description) 

Cla ss of c1055-

describing ob jects 

(Number of fieldsl2 

(Poi nt ers) True 

Figure 4: Class-describing object for class 
Point. 

have a variable number of fields and 
that these fields will not be pointers 
but will be numerical values stored in 
bytes . 

The purpose of the storage 
manager is to fetch and store fields of 
objects , to create objects , and to 
manage free space. A clean im­
plementation of the storage manager 

would be one in which the other parts 
of the system had access only to the 
object pointers and made requests of 
the storage manager only through the 
following subroutine calls: 

• getClass(objectPointer) returns the 
object pointer of the class of the given 
object 
• getField(objectPointer, fieldOffset) 
returns the field 
• storeF ield(objectPointer, fieldOff­
set,newValue) replaces that field 
with the new value newValue 

• newl nsta nce(cla ssObjectPoint­
er, numberOfFields) returns the object 
pointer of a new instance of that 
class, and, if that class can have in­
dexed instance variables, this instance 
has the given number of fields 
(numberOfFields) 

Requests can be made for new storage 
(with the newlnstance subroutine), 
but not to return used storage. In 
some other systems, storage that is no 
longer used must be explicitly re­
turned to the free storage pool. The 
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neither the user nor any part of the 
system other than the storage 
manager need have such concerns . 
Therefore the storage manager must 
know which objects are no longer be­
ing used, so that their storage may re­
en ter the free pool. Typically, 
Smalltalk-80 Virtual Machine im­
plementations use reference-counting 
to accomplish this. For every object 
in the system, the storage manager 
keeps a count of the number of other 
objects that point to it. This number 
will change only during execution of 
the four storage-manager sub­
routines. When this count reaches 
zero, the object's memory block may 
be reused because there are no 
references to that object anywhere 
else in the system. 

The Interpreter 
The interpreter is that portion of 

the Smalltalk-80 Virtual Machine that 
performs the actions described in the 
bytecodes of methods (ie: the 
machine code of the Virtual 
Machine). The information needed to 
implement the interpreter is the 



description of the bytecodes, the 
representation of methods, and the 
technique to find the method to run 
when sending a message. 

The bytecodes define the 
Smalltalk-80 Virtual Machine as a 
stack-oriented machine. Each byte­
code represents one of the following 
actions: 

.push an object onto the stack 

.store the top of the stack as the 
value for a variable 
.pop the top of the stack 
• branch to another bytecode 
• send a message using the top few 
elements of the stack 
• return the top of the stack as the 
value for this method 

In the Smalltalk-80 Virtual Machine, 
each of these actions is realized by 
one or more bytecodes. Note that 
pushing, storing, popping, and 
branching are standard instruction 
types for any stack machine, that 
sending a message corresponds to 
calling a procedure using the top few 

Bytecode Stack Contents After Execution (Top of Stack to Right) 

-1- Push 3 
-2- Push 4 
-3- Push 5 
-4- Send + 
-5- Send * 

(3) 
(3 4) 
(3 4 5) 
(3 9) 
(27) 

Table 1: Bytecodes for the Smalltalk expression 3 • (4 + 5). 

elements of the stack as arguments, 
and that returning an object from a 
method corresponds to returning a 
value from a procedure . The dif­
ference between the Smalltalk-80 Vir­
tual Machine and procedure-based 
stack machines is in the way the pro­
cedure is found . In most procedure­
based stack machines the address of a 
procedure is provided in the execute 
procedure instruction; in the 
Smalltalk-80 system only the "name," 
called the selector, of the message is 
provided; the method (or procedure) 
to be executed is found through a 
strategy involving the receiver of the 
message and its class. We will first 
describe the bytecodes, then how 

methods are represented, and finally 
give a strategy for finding methods. 

Stack Operations 
The Smalltalk-80 Virtual Machine 

and corresponding bytecode set are 
stack oriented. Object pointers are 
pushed and popped from a stack, and 
when a message is sent, the top few 
elements of the stack are used as 
receiver and arguments of the 
method. These are replaced by the 
object returned as the value of that 
method. For example, the Small­
talk-80 expression: 

3 * (4 + 5) 

--------------------------------, is encoded by the bytecodes shown in 
table 1 . 

o 
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As bytecodes labeled -1-, -2-, and -3-

are executed by the interpreter, the 
objects 3, 4, and 5 are pushed onto 
the stack. When bytecode -4- is ex­
ecuted, the message + is sent to the 
second object on the stack (4) with 
the top object of the stack as the argu­
ment (5). The 4 and 5 are popped off 
this stack when the message is sent, 
and the interpreter begins executing 
the bytecodes for the method cor­
responding to the message + in the 
Small talk class of small integers. This 
method will eventually return an ob­
ject, in this case 9, as its value, and 
the interpreter will push the 9 onto 
the original stack above the 3 and 
resume execution with bytecode -5-. 

Bytecode -5- will produce an effect 
similar to that produced by -4-, leav­
ing the object 27 on the stack. In the 
same way that other stack machines 
push data onto a stack and use the 
top few data items as arguments for a 
procedure, replacing them with the 
value returned from that procedure, 
the Smalltalk-80 Virtual Machine 
pushes object pointers onto a stack 



Bytecode 

-1- Push 3 
-2- Push 4 
-3- Send + 
-4- Store into a 

Stack Contents After Execution (Top of Stack to Right) 

(3) 
(34) 
(7) 
(7) 

Table 2: Bytecodes for the Smalltalk expression a - 3 + 4. 

Bytecode 

-1- Push 3 
-2- Store into a 
-3- Pop 
-4- Push 4 
-5- Store into b 

Stack Contents After Execution (Top of Stack to Right) 

(3) 
(3) 
( ) 
(4) 
(4) 

Table 3: Bytecodes for the Smalltalk expression a - 3. b - 4. 

Bytecode Stack Contents After Execution (Top of Stack to Right) 

-1- Push 3 (3) 
-2- Store into a (3) 
-3- Pop ( ) 
-4- Push a (3) 
-5- Return top of stack ( ) 

Table 4: Bytecodes for the Smalltalk expression a - 3. 1 a. 
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and uses the top few as receiver and 
arguments of a message, replacing 
them with the object returned from 
that method. 

In both machines, values from the 
top of the stack may be stored as the 
values of variables. As an example, 
the Small talk expression: 

a-3+4 

will be represented by the bytecodes 
in table 2. Here, -1-, -2- and -3- act as 
before and the interpreter executes 
bytecode -4- by storing the top of the 
stack 7 into the variable a. 

Stack machines in general, and the 
Smalltalk-80 Virtual Machine in par­
ticular, also have the ability to pop 
the tqp element off the stack. In the 
state~ents : 

'. 
a - 3. 
b-4 

once the 3 is stored into variable a , it 
is no longer needed, so it is popped 
from the stack . These statements are 
represented by the bytecodes shown 
in table 3. 

The top of the stack may be re­
turned as the value for the method. 
The statements: 

a - 3. 
I a 

are represented by the bytecodes 
shown in table 4. 

Branching Operations 
Conditional and looping messages 

are used so often that they are 
represented not by actual messages 
but by bytecodes for conditional and 
unconditional jumps. (This is only for 
performance reasons; these branching 
and looping messages would work if 
they were actually sent like other 
messages.) For example: 

a > 4 ifTrue: [a - a-I] 

(which in the Smalltalk-80 system 
means execute the code within the 
brackets only if the object returned 
from the> message is not false) is 
represented in table 5 (ignoring the 
stack from now on). 
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By tee ode 

-1- Push 4 
-2- Push a 
-3- Send> 
-4- Jump to -10- if the top of the stack is false 
-5- Push a 
-6- Push 1 
-7- Send-
-8- Store into a 
-9- Pop 
-10- < the next bytecode > 

Table 5: Bytecodes for the Smalltalk expression a > 4 ifTrue: [a - a - J I. 

By tee ode 

-1- Push a 
-2- Push 4 
-3- Send> 
-4- Jump to -11- if top of stack is false 
-5- Push a 
-6- Push 1 
-7- Send-
-8- Store into a 
-9- Pop 
-10- jump to -1-
-11- < the next bytecode >. 

Table 6: Bytecodes for the Smalltalk expression [a > 41 whileTrue: [a - a - II. 

Table 6 shows the bytecodes for the 
looping expression: 

[a > 4] whileTrue: [a - a - I] 

(which means execute the code in the 
second brackets as long as the code in 
the first set of brackets evaluates to 
something other than false) . 

Addressing Variables 
Methods are implemented as ob­

jects whose fields contain the 
bytecodes plus a group of pointers to 
other objects called the literal frame. 
The interpreter can use the getField 
subroutine of the storage manager to 
fetch the next required bytecode to 
execute . This takes care of returns, 
jumps, and pops, but for the other 
bytecodes we need to represent more 
information. In particular, for the 
push and store bytecodes, we need to 
represent where to find the object 
pointers to push; for the send 
bytecodes, we need to represent 
where to find the selector of the 
message and which stack elements are 

the receiver and arguments. 
The source code for a method con­

tains variable names and literals, but 
the bytecodes of the Virtual Machine 
are defined only in terms of field off­
sets. From the Virtual Machine's 
point of view, there are three types of 
variables: variables local to the 
method (called temporaries), 
variables local to the receiver of the 
message (instance variables), or 
variables found in some dictionary 
that the receiver's class shares (global 
variables). Note that class variables 
are treated in the same way as other 
global variables. The Smalltalk-80 
compiler (itself written in Small­
talk-80) translates references to 
these variables into bytecodes that 
are references to field offsets of the 
receiver, the temporary area, or 
globals. The instance variables are 
translated using a field qf class­
describing objects that associates in­
stance variable names with field off­
sets. The assignment of offsets to tem­
poraries is done when the compiler 
translates a method by associating 
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names of temporaries to offsets in the 
temporary area. The compiler creates 
instances for the literals, puts their 
object pointers into the literal frame 
of the method, and produces byte­
codes in terms of offsets into the 
literal frame. For global variables, the 
compiler uses system dictionaries that 

I Receiver 

l Stoc k ~ 

I Stock Pointer 

Method 

Current Bytecode 

Tempora r ies 
(including arguments) 

associate global names to indirect 
references to objects. Object pointers 
of the indirect references to the global 
objects are also placed in the literal 
frame of the method . The bytecodes 
for accessing globals are encoded as 
indirect references through field off­
sets of the literal frame . 

(Length) 

(Class description) 

(Instance variable, 

offset ~ 0) 

(Instance vari abl e, 
offset ~Iastl 

(Length) 

(Closs description) 

(Stock Element) 

. . 

(Stack Element) 

(Stack Element) 

(Length) 

(Class description) 

(Li tera I fr orne , 
offset ~ 0) 

(Uteral frome , 
offset ~ lost) 

(First bytecade) 

(Lost bytecade) 

(Length) 

(Closs description) 

(Temporary variable, 
off set ~ 0) 

(Temporary variable, 
offset ~ last) 

Figure 5: Object pointers held by the interpreter. 
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This means that when the inter­
preter is executing a method, it has to 
keep a stack, a temporary area, a 
pointer to the receiver and arguments 
of the method, and a pointer to the 
method itself (see figure 5) . It uses the 
storage manager 's getField and 
storeField subroutines to push and 
pOp pointers from the stack object, to 
retrieve and set values of variables in 
the temporary area, to retrieve and 
set values of variables of the receiver, 
and to get bytecodes and values of 
global variables from the method. 

Finding Methods 
When a message is sent, the 

receiver and arguments must be iden­
tified, and the appropriate method 
must be found by the interpreter. The 
technique used in Smalltalk-80 is to 
include in each class-describing object 
a dictionary, called the method dic­
tionary, that associates selectors with 
methods . Pointers to the selectors 
that will be sent by any method are 
kept in the method (along with global 
variable pointers and bytecodes). The 
bytecodes that tell the interpreter to 
send a message encode a field offset in 
the literal frame where the selector is 
found , plus the number of arguments 
that that method needs . By conven­
tion, the top elements of the stack are 
the arguments and the next one down 
is the receiver. For example, the send 
bytecode for the expression : 

3 + 4 

will stand for "send the selector in 
field X of the method (which will 
be +), and it takes one argument. " 
The interpreter will ask the storage 
manager for the X field of the 
method, will get the top of the stack 
(4) as the argument, and the next ele­
ment down (3) as the receiver. It will 
locate the receiver's class, its method 
dictionary, search it for an associa­
tion of the + selector with some 
method, and, when found , execute 
that method. 

If no such association is found, the 
searching does not end. The receiver's 
class may be a subclass of another 
class, called its superclass . If this is 
the case, the method for + may be 



(Length)7 

(CI ass de sc r i pt ion) 

Class of closs-

describing ob ject s 

(Number of fields)2 

(Poi nfer s 1 True 

(Instance Var iable 

Names) "xCoordinate 

yCoordinote" 

(Global Variable 
Dictiona ries) 

(Method Di ctionary) 

(SuperCla 55) 

Figure 6: Class-describing object for class 
Point, revisited. 

defined in the superclass, so the inter­
preter must check there . This means 
that each class must have a field that 
refers to its superclass (see figure 6) . 
The interpreter searches the method 
dictionary of the superclass, its 
superclass, and so on, until either an 
appropriate method is found or it 
runs out of superclasses, in which 
case an error occurs. 

To execute a method, the inter­
preter needs a place for temporaries 
and a stack for that method. In the 
Smalltalk-80 Virtual Machine, this is 
done by allocating an object that is an 
instance of class MethodContext. Ob­
jects in MethodContext keep track of 
the method, the stack for that 
method, a pointer to the next byte­
code to be executed in that method, 
the temporary variables for that 
method, and the context from which 
that method was invoked, called the 
caller of that method (see figure '7). 
When a method returns, the value 
returned is pushed on the stack of the 
caller context, and execution con­
tinues at the next bytecode of the 
caller's method. 
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computer. 

Primitive Subroutines 
The Smalltalk-80 Virtual Machine 

implementation is a program running 
in the machine language of the target 
computer. The storage manager is the 
collection of subroutines in this pro­
gram that deals with memory alloca­
tion and deallocation . The interpreter 
is the collection of subroutines in this 
program, one of which fetches the 
next bytecode from the currently run­
ning method and calls one of the 
o thers to perform the appropriate ac­
tion for that bytecode . In addition to 
these functions, we have found that 
there are several other places in the 
Smalltalk-80 system where perfor­
mance cons iderations make it 
necessary, or at least desirable, to im­
plement certain functions as machine­
code subroutines in the Smalltalk-80 
Virtual Machine. These places are: 

• input/output : connecting the 

Smalltalk-80 system to the actual 
hardware 
.arithmetic: basic arithmetic for in­
tegers 
.subscripting indexable objects : 
fetching and storing indexable in­
stance variables 
.screen graphics : drawing and mov­
ing areas of the screen bitmap quickly 
• object allocation : connecting the 
Smalltalk-80 code for creating a new 
instance with the storage manager 
subroutines 

We call this set of subroutines the 
primitive subroutines. 

The primitive subroutines are 
represented in the Smalltalk Virtual 
Image as methods with a special flag 
that says to run the corresponding 
subroutine rather than the 
Smalltalk-80 bytecodes. When the in­
terpreter is executing the code to send 
a message and finds one of these flags 
set, it calls the subroutine and uses 
the value returned from it as the value 
of the method . The number of these 
methods in Smalltalk-80 is small 
(around one hundred) in order to 
keep the rest of the system as flexible 
and extensible as possible . We will 
not list those methods that are 
primitives, but will refer the reader to 
Smalltalk: the Language and Its Im­
plementation (Goldberg, Robson , 
and Ingalls , 1981) for details . 
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A few of these primitive methods 
are executed so often that even the 
cost of looking them up in their 
classes' method dictionaries would be 
excessive. These methods are instead 
represented as special versions of the 
Send Message type of bytecodes. The 
message +, for example, is rep­
resented this way. When this 
bytecode is executed and the top two 
elements of the stack are small 
integers, then the primitive method is 
called as a subroutine. When this 
bytecode is executed and the top two 
elements of the stack are not small in­
tegers, then the + message is sent 
normally. 

Conclusion 
The Smalltalk-80 Virtual Machine 

is a fairly small computer program 
that consists of a storage manager, an 
interpreter, and a set of primitive 
subroutines. The task of implement­
ing a Smalltalk-80 Virtual Machine 
for a new target computer is not large 
(especially when compared with the 
task of implementing other large pro­
gramming systems) because most of 
the functions that must usually be im­
plemented in machine code are 
already part of the Smalltalk-80 Vir­
tual Image that runs on top of the Vir­
tual Machine. 

The Smalltalk-80 Virtual Machine 
could also be implemented in hard­
ware, although this has not yet been 
done. Such an implementation would 
sacrifice some of the flexibility of 
software, but it would result in the 
performance benefits that hardware 
provides. Given the evolving nature 
of Small talk, it may not yet be time to 
implement the Virtual Machine in 
hardware : new Small talks that are 
more powerful would likely need at 
least smaIl changes in Virtual 
Machine definition and implementa­
tion. However, hardware assists to 
Smalltalk-80 Virtual Machine soft­
ware can greatly improve perfor­
mance. Writable microcode stores for 
the pieces of code that are frequently 
run, hardware assists for graphics, or 
hardware assists for the fetching of 
bytecodes could all potentially im­
prove the performance of a 
Smalltalk-80 Virtual Machine im­
plementation .• 
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