
The Smalltalk-80
Virtual Machine

The Smalltalk-80 system is a
powerful system that encourages the
development of large applications
programs . The system contains a
compiler, a debugger, a storage man­
agement system, text and . picture
editors, and a file system. It also con­
tains a highly interactive user inter­
face based on graphics that include
overlapping windows.

Typically the task of bringing up
such a powerful system on a new
computer includes writing code to im­
plement these pieces. The Small­
talk-80 system is different in that
most of these pieces are written in
Smalltalk-80 itself. The part that can
be written in Smalltalk-80 is called
the Smalltalk-80 Virtual Image, and it
includes the compiler, debugger,
editors, decompiler, and the file sys­
tem.

Smal ltalk - 80 Virtual Image

(300 K bytes)

Sma lltalk-80 Virtual Machine

(10 K b)' tes)

Figure 1: The Smalltalk-BO Virtual
Machine . Most of Smalltalk-BO is written
in Smalltalk-BO (the Virtual Image) , leav­
ing only a small amount of code that has
to be rewritten for each processor on
which the language is implemented (the
Virtual Machine).

300 August 1981 © BYTE Publications Inc

Glenn Krasner
Learning Research Group

Xerox Palo Alto Research Center
3333 Coyote Hill Rd
Palo Alto CA 94304

The remaining part of the Small­
talk-80 system is defined in terms of
an abstract machine called the Small­
talk-80 Virtual Machine (see figure 1).
The Smalltalk-80 compiler translates
source code into machine instructions
for this virtual machine, rather than
translating directly into machine in­
structions for a particular hardware
machine. The task of bringing up a
Smalltalk-80 system on a new
"target" computer consists only of
implementing (writing a program to
simulate) the Small talk Virtual Ma­
chine on the target computer.

In this article, we will present an
overview of the elements needed to
implement the Small talk Virtual Ma­
chine. These elements are:

• the Storage Manager
• the Interpreter
• the Primitive Subroutines

Background
A Smalltalk-80 system is made up

of objects that have state and exhibit
behavior. Their state consists of the
values of both named and indexed in­
stance variables (which we will call
fields), and their behavior is exhibited
through sending and receiving mes­
sages. Objects are members of
classes.

Classes may be subclasses of other
classes-that is, they may inherit at­
tributes from other classes. Program­
ming in Smalltalk-80 is done by defin­
ing the procedures, or methods, that
are executed when objects receive
messages. Typieally, messages are

sent to other objects to invoke their
methods. Sometimes messages invoke
primitive (machine-code) subroutines
rather than Smalltalk-80 methods.

From this brief description of
Smalltalk-80, we can consider the in­
formation needed to implement each
of the three elements of the Small talk
Virtual Machine:

1. To implement the storage
manager, we need the information
necessary to represent objects in the
computer's memory. This informa­
tion consists of the amount of mem­
ory that each object will occupy,
which can be computed from the
number of fields the object has, and
the representation of fields in mem­
ory. Objects that describe classes de­
fine the number of fields their in­
stances will have, so we also need to
know how this number is repre­
sented . With this information, we can
design a storage manager for objects
in a Smalltalk-80 system that will :

.fetch the class of objects

.fetch and store fields of objects
• create new objects
.collect and manage free space

2. The interpreter executes the ma­
chine instructions of the Smalltalk-80
Virtual Machine. The information
needed to design the interpreter is a
description of these machine instruc­
tions, called bytecodes (the idea is
similar to Pascal p-codes). The byte­
codes are contained in methods, so
we also need to know the representa-

Circle 71 on inquiry card.

SIMPLY
BEAUTIFUL.
CF&A furniture looks terrific. But
beauty is more than skin deep.
That's why our line of desks,
stands, and enclosures also fea­
tures rugged construction, low
cost, and quick delivery. In a wide
range of sizes and configurations.
With accessories to meet your in­
dividual requirements. With a
smile and a thank you.

Call CF&A_ We make it simple. We
make it beautiful.

erA
Computer Furniture and

Accessories, Inc.
1441 West 132nd Street

Gardena, CA 90249
(213) 327·7710

302 August 1981 © BYTE Publications Inc

Who's Who
The design of the Smalltalk-80 Virtual Machine is based on previous Smalltalk

systems implemented by the Learning Research Group at Xerox PARe. The original
bytecode interpreter design was made for Smalltalk-76 by Dan Ingalls (Ingalls, Dan.
"The Smalltalk-76 Programming System: Design and Implementation. " In Fifth An­
nual ACM Symposium on Principles of Programming Languages, 1978, pages 9
through 16). Smalltalk-76 was implemented on the Xerox Alto by Dan Ingalls, Ted
Kaehler, Dave Robson, Steve Weyer and Diana Merry, on the Xerox Dolphin by
Peter Deutsch, and on the Xerox Dorado by Bruce Horn . Tiny Talk was implemented
on a Xerox microcomputer by Larry Tesler and Kim McCall (McCall, Kim and Larry
Tesler. "Tiny Talk, a Subset of Smalltalk-76 for64KB Microcomputers. " In Proceed­
ings of the Third Symposium on Small Systems, ACM Sigsmall Newsletter, Volume
6, Number 2, 1980, pages 197 through 19B). Smalltalk-78 (a revised version of
Smalltalk-76 similar to Smalltalk-80) was implemented on the Xerox microcomputer
by Dan Ingalls, Ted Kaehler, and Bruce Horn, on the Xerox Dorado by Jim Stamos,
and on a Norwegian microcomputer (under a research license from Xerox) by Bruce
Horn. Smalltalk-80 has been implemented on the Xerox Dorado by Peter Deutsch,
on the Xerox Dolphin by Kim McCall, and on the Xerox Alto by Glenn Krasner. The
designs of these systems were made by the implementors and other members of the
Learning Research Group.

tion of methods. From this informa­
tion we can decide how the inter­
preter will fetch and execute byte­
codes and how it will find methods to
run when messages are sent.

3. The last piece of information we
need to know is which messages will
invoke primitive subroutines; that is,
which methods we must implement in
machine code to terminate the recur­
sion of message sending and to op­
timize performance.

Before we go into more detail
about these elements of a Small­
talk-BO Virtual Machine implementa­
tion, here are a few typical figures
that will provide a little "reality" to
implementors. For the systems that
we have implemented at Xerox, the
Smalltalk-BO Virtual Image consists
of about 300 K bytes of objects. Our
typical implementation of the Small­
talk-BO Virtual Machine is 6 to 12 K
bytes of assembly code, or 2 K micro­
code instructions plus 10 K bytes of
assembly code . Of this, about 40% is
in the storage manager, 20 % in the
interpreter, and 40% in the primitive
subroutines. Our average is about
one person-year to implement a fully
debugged version of this code.

The Storage Manager
Although the storage manager

tends to be the largest and most com­
plex of the three parts of a Small-

talk-BO implementation, the functions
it provides are few and relatively sim­
ple to understand.

Everything In a
Smalltalk-80 system Is

an object.

Everything in a Small talk system is
an object, so from a storage point of
view memory needs to be divided
into blocks, one for each object, plus
a pool of memory that is not yet used .
Every time a new object is created, a
new block of the appropriate size
must be found for that object: when
objects are no longer used, their
memory block may be returned to the
pool (see figure 2).

A special entity called an object
pointer is assigned to each object. If
an object pointer were the actual core
address of the memory occupied by
that object, then there would be fast
access to an object given its pointer.
However, in the Smalltalk-BO system
the object pointer is an indirect
pointer to the object through a table
kept by the storage manager. This
allows the storage manager to move
an object around in memory without
affecting any object that refers to it. It
also insures that the storage manager
is the only entity in the system con­
cerned with (and allowed to change)

Circle 30B on inquiry card.

1Ifiii/
$27~;I.

HP-85 Accessories
5 '/. " Dual Master Disc Drive List $2500 $2125
5 v." Sing I .. Master Disc Drive List $1500 ... 51275
HP 7225A Graphics Plotter List $2050 S1845
Hp·8516K Memory Module List $395 5355
HP·85 Application Pacs Standard List 595 $85
Serial (RS·232C) Interlace Module List $395 .. S355
GPIO Interlace Module Li st $495 5445

newHP-83 $1~95
more memory

built in.
List $325

$249
Hp·41C
List $250

$199
HP·32E Scientific w / Statistics _ 53.95
HP·33C Scientific Programmable $79.95
HP·34C Advanced Scientific

Programmable 123.95
HP·37E Business Calculator __ $49.95

ftvrsonal
rC~omputet

_ Systems

609 Butternut Street
Syracuse, N.Y. 13208

(315) 475-6800
Prices do not include shipping by ups. All
prices and offers subject to change without
notice.

304 August 1981 © BYTE Publications Inc

Free Block

Object

Free Block

Free Block

Object

Objec t

Free Block

Object

Sto rogeMo no ger 1--=:-,...--:-----1
Objec t

Free Block

Figure 2: Objects and memory usage in
Smalltalk-BO. Each Smalltalk-BO object
has an object pointer that points to a
block of memory that describes the ob­
ject. When an object is no longer used, its
memory is made available for use.

ILengthl4

ICloss descri ption)

Poi nt

(x-coordinate)

(y-coordino Ie)

ILengthl5

(Clo ss description)

Triang le

I First verte x)

(Second ver te x)

IThird vertexl

I L engthl4

(C lo ss description)

ByteArray

1 2

3 4

Figure 3: Typical object represen tations
in Smalltalk-BO.

the actual memory . In the Small­
talk-80 Virtual Image, object pointers
are single 16-bit words. This allows
for 64 K objects in the system; these
objects may take up much more than
64 K words of memory.

Since an object's class and fields are
themselves objects, we can see that
the block of memory corresponding
to an object contains the object
pointer of the object's class plus the
object pointer for each of the object's
fields. The storage manager also
keeps the length of the block as one
word of the block . This means, for
example, that the block correspond­
ing to an ·object that is an instance of
class Point (see figure 3) will have :

.one word that says this block is four
words long
• one word that is the object pointer
of the object that describes class Point
.one word that is the object pointer
of an object that is the x-coordinate
field of the point
• one word that is the object pointer
of an object that is the y-coordinate
field of the point

Similarly, the block corresponding to
an object that is an instance of class
Triangle will have :

• one word saying this block is five
words long
• one word that is the object pointer
of the object that describes class
Triangle
.one word that is the object pointer
of an instance of class Point, repre­
senting one vertex field
.one word that is the object pointer
of an instance of class Point, for the
second vertex field
• one word that is the object pointer
of an instance of class POint, for the
third vertex field

For performance optimization, the
values in the fields of some objects,
such as instances of class ByteArray,
will be interpreted as the numerical
values themselves, rather than as
object pointers . The block corres­
ponding to the byte array containing
the elements 1, 2, 3, and 4, in order,
will have:

• one word saying this block is four
words long
.one word pointing to the object that
describes class ByteArray
• one byte encoding the number 1
• one byte encoding the number 2
• one byte encoding the number 3
• one byte encoding the number 4

We will represent all objects as hav­
ing fields interpreted as object
pointers or numerical values, not
both. Objects may store nume'rical
values as bytes or words, but not
both.

As we have mentioned, the objects
that describe classes also need to
represent the form of instances of
those classes. The essential informa­
tion is the number of fields the
instances will have, and whether
these will be pointer or nonpointer
fields ~ For example, the describer of
class Point says that its instances will
have two fields (x- and y-coordinates)
and that these will be pointers (see
figure 4). The describer of class
ByteArray says that its instances may

(Lengthl

(Class description)

Cla ss of c1055-

describing ob jects

(Number of fieldsl2

(Poi nt ers) True

Figure 4: Class-describing object for class
Point.

have a variable number of fields and
that these fields will not be pointers
but will be numerical values stored in
bytes .

The purpose of the storage
manager is to fetch and store fields of
objects , to create objects , and to
manage free space. A clean im­
plementation of the storage manager

would be one in which the other parts
of the system had access only to the
object pointers and made requests of
the storage manager only through the
following subroutine calls:

• getClass(objectPointer) returns the
object pointer of the class of the given
object
• getField(objectPointer, fieldOffset)
returns the field
• storeF ield(objectPointer, fieldOff­
set,newValue) replaces that field
with the new value newValue

• newl nsta nce(cla ssObjectPoint­
er, numberOfFields) returns the object
pointer of a new instance of that
class, and, if that class can have in­
dexed instance variables, this instance
has the given number of fields
(numberOfFields)

Requests can be made for new storage
(with the newlnstance subroutine),
but not to return used storage. In
some other systems, storage that is no
longer used must be explicitly re­
turned to the free storage pool. The

____________________________ , Small talk-80 philosophy is tha t

FINDING SOLUTIONS
AND BEING COMPETITIVE

IS OUR BUSINESS.
Having problems and looking for a
computer to help solve them?
Are you finding computer dealers
come in one of two ways? Either
Full system support with Full price
or Take it or Leave it with Low

"SUMMER
' .. "".-.... -........ ~~~.E! ••

price . At Omega we don't believe
that you should have to make a
choice . Yes, we' re in business to sell
products but also, to solve your
problems. Our prices will be the
lowest possible. Our support and

-tIIapPIa-computc!r
_ Authorized Dealer

product quality will be second to none. Check out our Mail Order prices in this
ad (our retail prices will be higher) . See if you don't agree with our first claim .
For our second claim, call us with your data processing needs and problems.
Better yet, come in and see us. Finding solutions and being competitive is our
business. We never forget either of them .

APPLE III
APPLE II "PLUS" 48K .
HEWLET PACKARD 85 or 83 .
APPLE II ACCESSORIES:

$CALL
"", $ 1129.00

$CALL

Disk II with controller $ 515 .00
Disk II 2nd drive 452.00
Graphics Tablet •• . 665 .00

Supplies :
Scotch Diskettes · Best of Quality!
price per box of (10)
744-0, 10, 32
740·0 SSISD 0 Sector .
741-0 SSI DD 0 Sector
743-0 DSI DD No Format

,$ 27,00
31 ,00
37,00
44.00

Language System with PASCAL 385 .00 New Products:
Silentype Printer Wl lnt 526 .00 Videx LIC Adapter•..... 110.00
Integer Firmware Card • . 152.00 Microsoff 16K RAM Card . 169.00
Microsoff Z·80 Softcard 259.00 D.C. Hayes Micromodem II 307.00
Videx videoterm 80 col Card 256.00 Novation DCAT Modem . .. 195.00
Sanyo 12" Green Monitor 269 .00 EPSON MX-80 CALL
Mail Order Terms of Sales: Price based on prepaid orders. NO COD's, Allow 14 working days for personal and company
checks to clear. Order under $100,00 add $3,00 for shipping and handling, All orders (unless specified in ad) within
Continential U.S. shipped UP.S. no charge. APO or out of Continentia I U,S, write or call for shipping charges, All prices
subject to change and all offers subject to withdrawl without notice. CA residents add 6% sales tax.

[)MEOA MI[]~[) [][)M~UTE~S
The Problem Solving Company 3447 Torrance Boulevard. Torrance, California 90503 • (213) 328-1760

306 August 1981 © BYTE Publications Inc Circle 276 on inquiry card,

neither the user nor any part of the
system other than the storage
manager need have such concerns .
Therefore the storage manager must
know which objects are no longer be­
ing used, so that their storage may re­
en ter the free pool. Typically,
Smalltalk-80 Virtual Machine im­
plementations use reference-counting
to accomplish this. For every object
in the system, the storage manager
keeps a count of the number of other
objects that point to it. This number
will change only during execution of
the four storage-manager sub­
routines. When this count reaches
zero, the object's memory block may
be reused because there are no
references to that object anywhere
else in the system.

The Interpreter
The interpreter is that portion of

the Smalltalk-80 Virtual Machine that
performs the actions described in the
bytecodes of methods (ie: the
machine code of the Virtual
Machine). The information needed to
implement the interpreter is the

description of the bytecodes, the
representation of methods, and the
technique to find the method to run
when sending a message.

The bytecodes define the
Smalltalk-80 Virtual Machine as a
stack-oriented machine. Each byte­
code represents one of the following
actions:

.push an object onto the stack

.store the top of the stack as the
value for a variable
.pop the top of the stack
• branch to another bytecode
• send a message using the top few
elements of the stack
• return the top of the stack as the
value for this method

In the Smalltalk-80 Virtual Machine,
each of these actions is realized by
one or more bytecodes. Note that
pushing, storing, popping, and
branching are standard instruction
types for any stack machine, that
sending a message corresponds to
calling a procedure using the top few

Bytecode Stack Contents After Execution (Top of Stack to Right)

-1- Push 3
-2- Push 4
-3- Push 5
-4- Send +
-5- Send *

(3)
(3 4)
(3 4 5)
(3 9)
(27)

Table 1: Bytecodes for the Smalltalk expression 3 • (4 + 5).

elements of the stack as arguments,
and that returning an object from a
method corresponds to returning a
value from a procedure . The dif­
ference between the Smalltalk-80 Vir­
tual Machine and procedure-based
stack machines is in the way the pro­
cedure is found . In most procedure­
based stack machines the address of a
procedure is provided in the execute
procedure instruction; in the
Smalltalk-80 system only the "name,"
called the selector, of the message is
provided; the method (or procedure)
to be executed is found through a
strategy involving the receiver of the
message and its class. We will first
describe the bytecodes, then how

methods are represented, and finally
give a strategy for finding methods.

Stack Operations
The Smalltalk-80 Virtual Machine

and corresponding bytecode set are
stack oriented. Object pointers are
pushed and popped from a stack, and
when a message is sent, the top few
elements of the stack are used as
receiver and arguments of the
method. These are replaced by the
object returned as the value of that
method. For example, the Small­
talk-80 expression:

3 * (4 + 5)

--------------------------------, is encoded by the bytecodes shown in
table 1 .

o

308 August 1981 © BITE Publications Inc Circle 152 on inquiry card.

As bytecodes labeled -1-, -2-, and -3-

are executed by the interpreter, the
objects 3, 4, and 5 are pushed onto
the stack. When bytecode -4- is ex­
ecuted, the message + is sent to the
second object on the stack (4) with
the top object of the stack as the argu­
ment (5). The 4 and 5 are popped off
this stack when the message is sent,
and the interpreter begins executing
the bytecodes for the method cor­
responding to the message + in the
Small talk class of small integers. This
method will eventually return an ob­
ject, in this case 9, as its value, and
the interpreter will push the 9 onto
the original stack above the 3 and
resume execution with bytecode -5-.

Bytecode -5- will produce an effect
similar to that produced by -4-, leav­
ing the object 27 on the stack. In the
same way that other stack machines
push data onto a stack and use the
top few data items as arguments for a
procedure, replacing them with the
value returned from that procedure,
the Smalltalk-80 Virtual Machine
pushes object pointers onto a stack

Bytecode

-1- Push 3
-2- Push 4
-3- Send +
-4- Store into a

Stack Contents After Execution (Top of Stack to Right)

(3)
(34)
(7)
(7)

Table 2: Bytecodes for the Smalltalk expression a - 3 + 4.

Bytecode

-1- Push 3
-2- Store into a
-3- Pop
-4- Push 4
-5- Store into b

Stack Contents After Execution (Top of Stack to Right)

(3)
(3)
()
(4)
(4)

Table 3: Bytecodes for the Smalltalk expression a - 3. b - 4.

Bytecode Stack Contents After Execution (Top of Stack to Right)

-1- Push 3 (3)
-2- Store into a (3)
-3- Pop ()
-4- Push a (3)
-5- Return top of stack ()

Table 4: Bytecodes for the Smalltalk expression a - 3. 1 a.

DISCOUNT
PRICES

Microcomputers & Peripherals

North Star. SWTPC • Lear-siegler
Hazeltine • Centronics • Cromemco
Wabash. Perkin Elmer and others

Fast, off the shelf delivery.
Call TOLL FREE 800/523-5355

MARKETLINE SYSTEMS, Inc_
2337 Philmont Ave., Huntingdon Valley, Pa. 19006

215/947-6670 • 800/523-5355
Dealer Inqui ries Invited

310 August 1981 © BITE Publications Inc Circle 209 on inquiry card.

and uses the top few as receiver and
arguments of a message, replacing
them with the object returned from
that method.

In both machines, values from the
top of the stack may be stored as the
values of variables. As an example,
the Small talk expression:

a-3+4

will be represented by the bytecodes
in table 2. Here, -1-, -2- and -3- act as
before and the interpreter executes
bytecode -4- by storing the top of the
stack 7 into the variable a.

Stack machines in general, and the
Smalltalk-80 Virtual Machine in par­
ticular, also have the ability to pop
the tqp element off the stack. In the
state~ents :

'.
a - 3.
b-4

once the 3 is stored into variable a , it
is no longer needed, so it is popped
from the stack . These statements are
represented by the bytecodes shown
in table 3.

The top of the stack may be re­
turned as the value for the method.
The statements:

a - 3.
I a

are represented by the bytecodes
shown in table 4.

Branching Operations
Conditional and looping messages

are used so often that they are
represented not by actual messages
but by bytecodes for conditional and
unconditional jumps. (This is only for
performance reasons; these branching
and looping messages would work if
they were actually sent like other
messages.) For example:

a > 4 ifTrue: [a - a-I]

(which in the Smalltalk-80 system
means execute the code within the
brackets only if the object returned
from the> message is not false) is
represented in table 5 (ignoring the
stack from now on).

Circle 320 on Inquiry card.

------------------I -! Fa.ctory I
! DIrect i
I . -_ EliMINATE THE MIDDLE MAN! I

! 16Ks~~T~C i
I -
- I ! i
I -- I
I -
- I I RAM 16 -
- COMPARE OUR FEA TURES! I
I_ S-100· 16K X 8 Bit Static RAM • -I

21141K X 4 Static RAM Chip. 2 or
I 4 MHZ • 4K Step Addressable • 1 K -
_ Increment Memory • Protection I
I from Top Board Address Down or -
_ from Bottom Up • Deactivates up I
I to 6 1 K Board Segments to Create -
_ Holes for Other Devices· Phantom I
I Line DIP Switch • DIP Switch Selec- _

table Wait States • 8 Bank Select I
I- Line Expands to V, Million Bytes • _

Ali Data Address and Control Lines I
I
- Are Input Buffered • Ignores 1/0 _

Commands at Board Address • Our
- Most Popular Board - Over 5000 I I Now in Use Worldwide! -

- A & T Factory Direct Price: I
I -i $175.°° !
_ One Year Warranty I
I DON'T PA Y MORE! -

- I
I -- I
I -
- I
I -- I
I -- NEW! - RAM 65 I
I -_ All of the Above Advanced Features I
I

PLUS: Bank Selection by 1/0 _
Instruction Using Any One of 256 I

- DIP Switch-Selectable Codes • This I Allows Up to 256 Software Con- -I
- trolled Memory Banks! • Our Most
I_ Advanced 16K Add-On Board. -I

A & T Factory Direct Price:

I -i $185.00!
• One Year Warranty I ! DON'T PAY MORE! i
I

All of our Boards Are the Highest _
Quality MIL SPEC G-14 Fibreglass. I

_ All utilize Solder Mask over Copper I Technique for Higher Reliability! -
_ MIX AND MATCH FOR BEST PRICING . I
I Include $3.00 shipping & handling per -

ord er. California residents include 6% I
• sales tax. I TERMS: Cash, c hecks, money orde rs or purchase •
• orders from qualified firms or institutions. PriCing I
I

and availability subj ect to change without notice. •
International sales in U.S. funds only, COD's

• include 25% with order. I
I Quality Computer Parts -
_ P. O. BOX 743, DEPT. B1 I
I

CHATSWORTH, CA 91311
• Telephone (213) 882-3142 i
----------------_. 312 August 1981 © BYTE Publications Inc

By tee ode

-1- Push 4
-2- Push a
-3- Send>
-4- Jump to -10- if the top of the stack is false
-5- Push a
-6- Push 1
-7- Send-
-8- Store into a
-9- Pop
-10- < the next bytecode >

Table 5: Bytecodes for the Smalltalk expression a > 4 ifTrue: [a - a - J I.

By tee ode

-1- Push a
-2- Push 4
-3- Send>
-4- Jump to -11- if top of stack is false
-5- Push a
-6- Push 1
-7- Send-
-8- Store into a
-9- Pop
-10- jump to -1-
-11- < the next bytecode >.

Table 6: Bytecodes for the Smalltalk expression [a > 41 whileTrue: [a - a - II.

Table 6 shows the bytecodes for the
looping expression:

[a > 4] whileTrue: [a - a - I]

(which means execute the code in the
second brackets as long as the code in
the first set of brackets evaluates to
something other than false) .

Addressing Variables
Methods are implemented as ob­

jects whose fields contain the
bytecodes plus a group of pointers to
other objects called the literal frame.
The interpreter can use the getField
subroutine of the storage manager to
fetch the next required bytecode to
execute . This takes care of returns,
jumps, and pops, but for the other
bytecodes we need to represent more
information. In particular, for the
push and store bytecodes, we need to
represent where to find the object
pointers to push; for the send
bytecodes, we need to represent
where to find the selector of the
message and which stack elements are

the receiver and arguments.
The source code for a method con­

tains variable names and literals, but
the bytecodes of the Virtual Machine
are defined only in terms of field off­
sets. From the Virtual Machine's
point of view, there are three types of
variables: variables local to the
method (called temporaries),
variables local to the receiver of the
message (instance variables), or
variables found in some dictionary
that the receiver's class shares (global
variables). Note that class variables
are treated in the same way as other
global variables. The Smalltalk-80
compiler (itself written in Small­
talk-80) translates references to
these variables into bytecodes that
are references to field offsets of the
receiver, the temporary area, or
globals. The instance variables are
translated using a field qf class­
describing objects that associates in­
stance variable names with field off­
sets. The assignment of offsets to tem­
poraries is done when the compiler
translates a method by associating

An index of over

10,000 Key
Values In Less

Than One
Second

On A Floppy Disk System
for only

314 August 1981 © BYrE Publications Inc

names of temporaries to offsets in the
temporary area. The compiler creates
instances for the literals, puts their
object pointers into the literal frame
of the method, and produces byte­
codes in terms of offsets into the
literal frame. For global variables, the
compiler uses system dictionaries that

I Receiver

l Stoc k ~

I Stock Pointer

Method

Current Bytecode

Tempora r ies
(including arguments)

associate global names to indirect
references to objects. Object pointers
of the indirect references to the global
objects are also placed in the literal
frame of the method . The bytecodes
for accessing globals are encoded as
indirect references through field off­
sets of the literal frame .

(Length)

(Class description)

(Instance variable,

offset ~ 0)

(Instance vari abl e,
offset ~Iastl

(Length)

(Closs description)

(Stock Element)

. .

(Stack Element)

(Stack Element)

(Length)

(Class description)

(Li tera I fr orne ,
offset ~ 0)

(Uteral frome ,
offset ~ lost)

(First bytecade)

(Lost bytecade)

(Length)

(Closs description)

(Temporary variable,
off set ~ 0)

(Temporary variable,
offset ~ last)

Figure 5: Object pointers held by the interpreter.

APPLESOFT®
Basic
Compiler

$167.50 Compiles APPLESOFTo BASIC programs into
native 6502 code, allowing programs to run up to
10 times faster. Handles graphics and shape

tables . Requires 48K, autostart ROM, language
system and at least one drive . Ust Price: $200.00

~~Aficrohouse
SPELLSTAR
New! Option for Wordstar. Compares words in
your text to its 20,000-word compressed
dict ionary. Jumps back to WordStar for correction
of errors or addition of new words to the
dictionary . Pric e includes update of registered
2.x and earlier WordS tar (must send master disk).
List Price: $250.00
Microhouse Price: $165.00/NA

WORDSTAR
Version 3.0! Now featuring horizontal scrolling
and column moves.
List Price: $495.00
Microhouse Price: $322.00/ $40.00

WORDSTAR for APPLE
List Price: $375.00
Microhouse Price : $245.00/ $40.00

WORDSTAR CUSTOMIZATION NOTES
Package includes manual and diskette.
List Price: $150.00
Microhouse Price: $95.00/NA

MAILMERGE
Opt ion for Words tar.
List Price: $150.00
Microhouse Price: $110.00/ $40.00

MAILMERGE for APPLE
List Price: $125.00
Microhouse Price: $S5.00/ $25.OO

VISICALC for APPLE
List Price: $150.00
Microhouse Price : $107.00INA

SUPERSORTI
List Price: $250.00
Microhouse Price: $170.00/ $40.00

SUPERSORT II
List Price: $200.00
Microhouse Price : $145.00/$40.00

SUPERSORTforAPPLE
List Price: $200.00
Microhouse Price: $130.00/ $40.00

DATASTAR
List Price: $350.00
Microhouse Price : $245.00/ $40.00

WORDMASTER
List Price: $150.00
Microhouse Price: $119.00/$40.00

CALL OR WRtTE FOR FREE CATALOG

MICROSOFT BASIC 80
List Price: $350.00
Microhouse Price : $273.00/$30.00

MICROSOFT BASIC 80 COMPILER
Language compatible with MBASIC but code runs
3-10x faster.
List Price: $395.00
Microhouse Price: $30S.00/$30.00

MICROSOFT FORTRAN 80
Compi ler is ANSI '66 compat ible (except for
COMPLEX).
Li st Price: $500.00
Microhouse Price: $345.00/ $30.00

muSIMP/muMATH by Microsoft
List Price: $250.00
Microhouse Price : $195.00/ $25.00

COBOL 80 by Microsoft
List Price: $750.00
Microhouse Price: $562 .50/ $30.00

MACRO 80 by Microsoft
Li st Price: $200.00
Microhouse Price : $140.00/ $20.00

EDIT 80 by Microsoft
List Price: $120.00
Microhouse Price: $S4.00/ $20.00

WHITESMITHS C
List Price: $630.00
Microhouse Price : CAll/$30.00

TINY C Interpreter
List Price: $100.00
Microhouse Price : $79.00/ $50.00

TINY C Compiler
List Price: $250.00
Microhouse Price: $195.00/$50.00

SPELLGUARD
Fast stand-a lone program works with nearly any
CP/ M" word processor.
Li st Price: $295.00
Microhouse Price: $230.00/$25.00

STACKWORKS FORTH
For ZBO or BOBO (specify).
Lisl Price: $175.00
Microhouse Price: $160.00/ $30.00

WHITESMITHS PASCAL
Includes Whitesmiths C Compil er.
List Price: $850.00
Microhouse Price: CAll /$45.00

~~~~~~Microhouse 

316 August 1981 © BYTE Publications Inc 

P.O. BOX 498 

BETHLEHEM. PA 18016 

(215) 868·8219 

Circ le 228 o n inquiry c a rd. 

This means that when the inter­
preter is executing a method, it has to 
keep a stack, a temporary area, a 
pointer to the receiver and arguments 
of the method, and a pointer to the 
method itself (see figure 5) . It uses the 
storage manager 's getField and 
storeField subroutines to push and 
pOp pointers from the stack object, to 
retrieve and set values of variables in 
the temporary area, to retrieve and 
set values of variables of the receiver, 
and to get bytecodes and values of 
global variables from the method. 

Finding Methods 
When a message is sent, the 

receiver and arguments must be iden­
tified, and the appropriate method 
must be found by the interpreter. The 
technique used in Smalltalk-80 is to 
include in each class-describing object 
a dictionary, called the method dic­
tionary, that associates selectors with 
methods . Pointers to the selectors 
that will be sent by any method are 
kept in the method (along with global 
variable pointers and bytecodes). The 
bytecodes that tell the interpreter to 
send a message encode a field offset in 
the literal frame where the selector is 
found , plus the number of arguments 
that that method needs . By conven­
tion, the top elements of the stack are 
the arguments and the next one down 
is the receiver. For example, the send 
bytecode for the expression : 

3 + 4 

will stand for "send the selector in 
field X of the method (which will 
be +), and it takes one argument. " 
The interpreter will ask the storage 
manager for the X field of the 
method, will get the top of the stack 
(4) as the argument, and the next ele­
ment down (3) as the receiver. It will 
locate the receiver's class, its method 
dictionary, search it for an associa­
tion of the + selector with some 
method, and, when found , execute 
that method. 

If no such association is found, the 
searching does not end. The receiver's 
class may be a subclass of another 
class, called its superclass . If this is 
the case, the method for + may be 



(Length)7 

(CI ass de sc r i pt ion) 

Class of closs-

describing ob ject s 

(Number of fields)2 

(Poi nfer s 1 True 

(Instance Var iable 

Names) "xCoordinate 

yCoordinote" 

(Global Variable 
Dictiona ries) 

(Method Di ctionary) 

(SuperCla 55) 

Figure 6: Class-describing object for class 
Point, revisited. 

defined in the superclass, so the inter­
preter must check there . This means 
that each class must have a field that 
refers to its superclass (see figure 6) . 
The interpreter searches the method 
dictionary of the superclass, its 
superclass, and so on, until either an 
appropriate method is found or it 
runs out of superclasses, in which 
case an error occurs. 

To execute a method, the inter­
preter needs a place for temporaries 
and a stack for that method. In the 
Smalltalk-80 Virtual Machine, this is 
done by allocating an object that is an 
instance of class MethodContext. Ob­
jects in MethodContext keep track of 
the method, the stack for that 
method, a pointer to the next byte­
code to be executed in that method, 
the temporary variables for that 
method, and the context from which 
that method was invoked, called the 
caller of that method (see figure '7). 
When a method returns, the value 
returned is pushed on the stack of the 
caller context, and execution con­
tinues at the next bytecode of the 
caller's method. 

The New ADDS VIeWpoint 
:.~~gI~gJinal. $649 

Re verse video. hall-intensity , underlining by 
fields . Printer port. ADDS quality construction . 

~~Aficl'ohouse 
CALL FOR LOW PRICES ON IMS Series 5000 and 
8000 Computers 

C ITOH STARWRITER I 
Lelter'quality printer uses Diablo plastic 
printwheels and ribbons . 25 cps bidirectional. 
logic·seeking . Parallel interface . 
List Price : S1895.00 
Microhouse Price: $1431 .00 

C ITOH STARWRITER I (Serial) 
Lisl Price: $ I 960.00 
Microhouse Price : 51502.00 

DIABLO 630 
Lelter'quali ty printer uses plastic and metal 
printwheels . 40 cps. bidirectional. logic ·seeking. 
Optional trac10r: $225. 
List Price: $27 I 0.00 
Microhouse Price : $1999.00 

EPSON MX70 
Includes GRAFTRAX II dOI·addressable graphics . 
Monodirectional. 80 cps. Adjustable tractor. 
Parallel only . 
Lisl Price: $450.00 
Microhouse Price : 

EPSON MX80 
Removable print head. bidirectional . logic­
seeking. adjustable tractor. parallel interface. 
Easi ly converted to RS232, IEEE 488. Apple or 
ATARI. CALL FOR INFORMATION ON THE NEW 
GRAPHICS ROM PACK ' 
List Price : $645.00 
Microhouse Price: 

EPSON MX·80 FT 
Friction AND tractor feed version of the MX-80. 
Parallel interface included. 
List Price: $745.00 
Microhouse Price : 

TELEVIDEO 910 Terminal 
List Price: $699.00 
Microhouse Price : $595.00 

TELEVIDEO 950 
List Price: $1 195.00 
Microhouse Price : $995.00 

CALL OR WRITE FOR FREE CATALOG 

PRICES AND SPECIFICATIONS SUBJECT TO 
CHANGE WITHOUT NOTICE 

~~ Software Manual 
~~ & Manual/Only 

Circle 228 on inquiry card. 

ASK ABOUT THE NEW Televideo COMPUTER 
SYSTEMS 

IDS PAPER TIGER 560G 
Li sl Price: $1695.00 
Microhouse Price: $1464.00 

. VIDEX VIDEOTERM SPECIAL! 
Carried over by popular demand. Converts you r 
Apple screen to 80x24 upper and lower case. 
Purchase VIDEOTERM with WordStar and save' 
If purchased separately : $290. 
Lisl Price: $345.00 
Microhouse Price: $270.00 

MORROW DISCUS 20 
8 inch single-sided double-density floppy disk 
drive subsys tem. Includes CP/M· and MBASIC. 
List Price: $1199.00 
Microhouse Price : $995.00 

MORROW HARD DISK SUBSYSTEM 
10 Megabyte. Includes S'100 controller card. 
CP/M" . and enclosu re . 
List Price: $3695.00 
Microhouse Price: $3062.00 

MICROSOFT APPLE SOFTCARD 
Purchase the softcard with MicroPro 's WordStar 
and save $70! Converts your Apple II or II plus to 
a CP/M" system. Includes MBASIC! Price if 
purchased separately: $295. 
list Price: $349.00 
Microhouse Price: $279.00 

TCS/Atlanta INTERACTIVE 
ACCOUNTING SYSTEM 
for small businesses. Ver. 5.0. Each package can 
be used alone or post automatically to the 
General Ledger. Compiled version (no support 
language needed). Price listed is per package. 
Generalledger, Accounts Receivable. Accounts 
Payable , and Payroll packages available . Call for 
detai ls on new Order Entry & Inventorypackages. 
ALSO AVAILABLE FOR APPLE II. Also available in 
source. 
List Price: Compare at $530 
Microhouse Price : $79.00/$25.00 

ALL FOUR TCS PACKAGES (compiled) 
list Price: Compare at $530/pkg. 
Microhouse Price: $269.00/$90.00 

CP/M is a registered trademark of Digital Research 
UNIX is a registered trademark of Bell Labs 
APPLE is a registered trademark o f Apple Computers 
TRSSO is a registered trademark of Tandy Corp_ 

SHIPPING: Add $5 per manual or software package. 
Add $2.50 for COD orders. Call for shipping charges 
on o ther items. Pennsylvania residents add 6 per cen t 
sales tax. 

August 1981 © BITE Publications Inc 317 



Circle 263 on inquiry card. 

T~S·BD 
MICROCOMPUTERS 
We have consistently offered the 
TRS-80 line at savings up to 20%. You 
can save up to $1500 by buying 
from Computer Discount of America. 

ATARI®' ..... r ~\ 
MICROCOMPUTERS ........ ___ ,_-.,j\ 

We have the full line of ATARI per­
sonal computers and systems. 
Model II 
26-4002 64K . 1 disc $3385.00 

Model III 
26-1061 4K, Levell $ 610.00 
26- 1062 16K, Leve l III $ 845.00 
26-1066 48K, Level II 2-dri ve /RS-232 $2115,00 

Color Computer 
26-3001 4K $ 329.00 
26-3002 16K w/Ext. Bas ic $ 499.00 

EPSON 
MX70 Pr inter $ 375.00 
MX80 Pri nter $ 485.00 
MX80FT Printer $ 639.00 

Our savings are as big on expansion 
interfaces, printers, diskettes, Apple 
Computers , OKIDATA Microline, 
C-ITOH Starwriter, Lexicon Modems 
- everything for your computer . 
We have the largest inventory in the 
Northeast, and most models are in 
stock, for immeeiate delivery, 
Our full price catalog or a price 
quote is as near as your phone. 

COMPUTER DISCOUNT OF AMERICA, INC. 
15 Marshall Hill Road, West Milford Mall 
West Milford. New Jersey 07480 
In New Jersey CaU201-728-8080 

318 August 1981 © BYTE Publications Inc 

Cu Hen t Co ni ex t 

( L engt h I 

(Cl ass descrip t i on 1 

Me thodeo nt ex t 

(Receiver) 

(S t a ck I 

(S t ack Point erl 

( Method l 

(C urren t By t ecodel 

(Temporarie s) 

(Co ll er! 

Figure 7: The on ly object poin ter used by the Smalltalk-BO in terpreter is a reference to 
a MethodContext , 

The Smalltalk-BO 
Virtual Machine 

Implementation is a 
program running in 

the machine language 
of the target 

computer. 

Primitive Subroutines 
The Smalltalk-80 Virtual Machine 

implementation is a program running 
in the machine language of the target 
computer. The storage manager is the 
collection of subroutines in this pro­
gram that deals with memory alloca­
tion and deallocation . The interpreter 
is the collection of subroutines in this 
program, one of which fetches the 
next bytecode from the currently run­
ning method and calls one of the 
o thers to perform the appropriate ac­
tion for that bytecode . In addition to 
these functions, we have found that 
there are several other places in the 
Smalltalk-80 system where perfor­
mance cons iderations make it 
necessary, or at least desirable, to im­
plement certain functions as machine­
code subroutines in the Smalltalk-80 
Virtual Machine. These places are: 

• input/output : connecting the 

Smalltalk-80 system to the actual 
hardware 
.arithmetic: basic arithmetic for in­
tegers 
.subscripting indexable objects : 
fetching and storing indexable in­
stance variables 
.screen graphics : drawing and mov­
ing areas of the screen bitmap quickly 
• object allocation : connecting the 
Smalltalk-80 code for creating a new 
instance with the storage manager 
subroutines 

We call this set of subroutines the 
primitive subroutines. 

The primitive subroutines are 
represented in the Smalltalk Virtual 
Image as methods with a special flag 
that says to run the corresponding 
subroutine rather than the 
Smalltalk-80 bytecodes. When the in­
terpreter is executing the code to send 
a message and finds one of these flags 
set, it calls the subroutine and uses 
the value returned from it as the value 
of the method . The number of these 
methods in Smalltalk-80 is small 
(around one hundred) in order to 
keep the rest of the system as flexible 
and extensible as possible . We will 
not list those methods that are 
primitives, but will refer the reader to 
Smalltalk: the Language and Its Im­
plementation (Goldberg, Robson , 
and Ingalls , 1981) for details . 



Need a 
Real-Time Multi-Tasking 
Executive for 8080 and Z807 

AWI~ 
• Faultless operation proven in world wide use 
• Truly hardware independent 
• Optimized for fast interrupt response 
• Minimal memory requirements 
• ROMable for control applications 
• Terminal Handler is CP/M BOOS compatible 
• Console Driver supports Intel iSBC boards 
• SYSGEN speeds user system configuring 
• Program in PUM, Fortran, Pascal or Assembler 
• Source code included (Intel or Zilog mnemonics) 
• Unlimited use licence agreement 
• Complete documentation (available separately) 
• Low cost 

Circle 418 on Inquiry card. 

Deale r enquiries invited 

~~ KADAK Products Ltd. 
~F 206-1847 West Broadway Ave nu e 

Vanco uve r, B.C., Canada V6J IY 5 
Telephone (604) 734-2796 

CP/ M is iltradema rk of Digital Reseil rch Corp ; RMX /HO, iSBC ilre trademilrks of Inte l Cur l'. 

ADA 
A NEW BEGINNING 

ADA / M - Compiles ADA program into the Host assembly language. 
Excellent for learning ADA and converting existing programs. 
Includes ADA Compiler and Compiler ADA Programming Support 
Environment (CAPSE) . . . ................. ... .. . ..... . . . . $495. 

ADA / P - Compiler and Kernal APSE (KAPSE) for Apple / ATRI 
.. . .. ..... . .... . .. . ............ . ..... . . . . . . .... ... .. ..... $995 . 

ADA / R - Compiler and KAPSE for TRS-80 ......... . .... $995. 

ADAIH8 - ADA Language System (ALS). Includes Compiler, 
KAPSE, Minimal APSE (MAPSE) and Library APSE (LAPSE). 
Z80 ,8080 ....... . ...................................... $2 ,995 . 

ADA / H16 - ALS. Includes Compiler, KAPSE, MAPSE, and LAPSE. 
PDP-11 , Z8000, 8086, 9900 .. . .... . . . ... . .. . .. .. . . . .. . . $3 ,995. 

ADA Programmers Manual .. .... . . . .. . .. .. .... .. . .. . . . .... $25 . 
ADA Syntax Reference Card ......... .. ...... . .. . ....... . .. $6. 

Credit for purchase of ADA/ M will be given toward purchase of 
larger ALS. Royalty will be paid to customers who convert ex isting 
programs into ADA for inclusion in the ALS library. 

DIGITAL ELECTRONIC SYSTEMS, INC. 
Box 5252, Torrance, California 90510 

320 August 1981 © BITE Publications Inc Circle 378 on inquiry card . 

A few of these primitive methods 
are executed so often that even the 
cost of looking them up in their 
classes' method dictionaries would be 
excessive. These methods are instead 
represented as special versions of the 
Send Message type of bytecodes. The 
message +, for example, is rep­
resented this way. When this 
bytecode is executed and the top two 
elements of the stack are small 
integers, then the primitive method is 
called as a subroutine. When this 
bytecode is executed and the top two 
elements of the stack are not small in­
tegers, then the + message is sent 
normally. 

Conclusion 
The Smalltalk-80 Virtual Machine 

is a fairly small computer program 
that consists of a storage manager, an 
interpreter, and a set of primitive 
subroutines. The task of implement­
ing a Smalltalk-80 Virtual Machine 
for a new target computer is not large 
(especially when compared with the 
task of implementing other large pro­
gramming systems) because most of 
the functions that must usually be im­
plemented in machine code are 
already part of the Smalltalk-80 Vir­
tual Image that runs on top of the Vir­
tual Machine. 

The Smalltalk-80 Virtual Machine 
could also be implemented in hard­
ware, although this has not yet been 
done. Such an implementation would 
sacrifice some of the flexibility of 
software, but it would result in the 
performance benefits that hardware 
provides. Given the evolving nature 
of Small talk, it may not yet be time to 
implement the Virtual Machine in 
hardware : new Small talks that are 
more powerful would likely need at 
least smaIl changes in Virtual 
Machine definition and implementa­
tion. However, hardware assists to 
Smalltalk-80 Virtual Machine soft­
ware can greatly improve perfor­
mance. Writable microcode stores for 
the pieces of code that are frequently 
run, hardware assists for graphics, or 
hardware assists for the fetching of 
bytecodes could all potentially im­
prove the performance of a 
Smalltalk-80 Virtual Machine im­
plementation .• 


	Cover

	Index

	In This Issue

	Editorial: Smalltalk, A Language for the 1980s

	Introducing the Smalltalk-80 Systelll
	Letters

	The Smalltalk-80 System
	Build a Z8-Based Control Computer with BASIC, Part 2
	Object-Oriented Software Systems
	The Smalltalk Environment
	User-Oriented Descriptions of Sntalltalk Systents
	The Smalltalk Graphics Kernel
	The Japanese Computer Invasion
	BYTELINES

	Building Data Structures in the Smalltalk-80 System
	Design Principles Behind Smalltalk
	The Smalltalk-80 Virtual Machine
	Building Control Structures In the Smalltalk-80 System
	Is the Smalltalk-80 System for Children?
	ToolBox: A Smalltalk Illustration System.
	Virtual Memory for an Object-Oriented Language
	Ask BYTE

	Books Received

	Software Received

	Clubs and Newsletters

	BYTE's Bugs

	Event Queue

	Microsoft Editor / Assembler Plus
	BOSS: A Debugging Utility for the TRS-80 Model I
	Indirect I/O Addressing on the 8080
	A Disk Catalog for the Eighties
	Alpha-Beta Tree Search Converted to Assentbler
	AIM-65 16-Bit Hexadecintal to Decintal Conversion
	Fast Line-Drawing Technique
	Word Ujbnm.urle
	Binary-to-BCD Converter PrograDl for the 8080
	What's New?

	Unclassified Ads




