
XSECURITY(1) XSECURITY(1)

NAME
X security − X display access control

SYNOPSIS
X provides mechanism for implementing many access control systems. Release 6 includes five mecha-
nisms:

Host Access Simple host-based access control.
MIT-MAGIC-COOKIE-1 Shared plain-text "cookies".
XDM-AUTHORIZATION-1 Secure DES based private-keys.
SUN-DES-1 Based on Sun’s secure rpc system.
MIT-KERBEROS-5 Kerberos Version 5 user-to-user.

ACCESS SYSTEM DESCRIPTIONS
Host Access

Any client on a host in the host access control list is allowed access to the X server. This sys-
tem can work reasonably well in an environment where everyone trusts everyone, or when
only a single person can log in to a given machine, and is easy to use when the list of hosts
used is small. This system does not work well when multiple people can log in to a single
machine and mutual trust does not exist. The list of allowed hosts is stored in the X server and
can be changed with thexhostcommand. When using the more secure mechanisms listed
below, the host list is normally configured to be the empty list, so that only authorized pro-
grams can connect to the display.

MIT-MAGIC-COOKIE-1
When using MIT-MAGIC-COOKIE-1, the client sends a 128 bit "cookie" along with the con-
nection setup information. If the cookie presented by the client matches one that the X server
has, the connection is allowed access. The cookie is chosen so that it is hard to guess;xdm
generates such cookies automatically when this form of access control is used. The user’s
copy of the cookie is usually stored in the.Xauthorityfile in the home directory, although the
environment variableXAUTHORITY can be used to specify an alternate location.Xdmauto-
matically passes a cookie to the server for each new login session, and stores the cookie in the
user file at login.

The cookie is transmitted on the network without encryption, so there is nothing to prevent a
network snooper from obtaining the data and using it to gain access to the X server. This sys-
tem is useful in an environment where many users are running applications on the same
machine and want to avoid interference from each other, with the caveat that this control is
only as good as the access control to the physical network. In environments where network-
level snooping is difficult, this system can work reasonably well.

XDM-AUTHORIZATION-1
Sites in the United States can use a DES-based access control mechanism called XDM-
AUTHORIZATION-1. It is similar in usage to MIT-MAGIC-COOKIE-1 in that a key is
stored in the.Xauthorityfile and is shared with the X server. Howev er, this key consists of
two parts - a 56 bit DES encryption key and 64 bits of random data used as the authenticator.

When connecting to the X server, the application generates 192 bits of data by combining the
current time in seconds (since 00:00 1/1/1970 GMT) along with 48 bits of "identifier". For
TCP/IP connections, the identifier is the address plus port number; for local connections it is
the process ID and 32 bits to form a unique id (in case multiple connections to the same server
are made from a single process). This 192 bit packet is then encrypted using the DES key and
sent to the X server, which is able to verify if the requestor is authorized to connect by
decrypting with the same DES key and validating the authenticator and additional data. This
system is useful in many environments where host-based access control is inappropriate and
where network security cannot be ensured.

SUN-DES-1
Recent versions of SunOS (and some other systems) have included a secure public key remote
procedure call system. This system is based on the notion of a network principal; a user name
and NIS domain pair. Using this system, the X server can securely discover the actual user
name of the requesting process. It involves encrypting data with the X server’s public key, and

X Version 11 Release 6 1



XSECURITY(1) XSECURITY(1)

so the identity of the user who started the X server is needed for this; this identity is stored in
the .Xauthorityfile. By extending the semantics of "host address" to include this notion of
network principal, this form of access control is very easy to use.

To allow access by a new user, usexhost. For example,
xhost keith@ ruth@mit.edu

adds "keith" from the NIS domain of the local machine, and "ruth" in the "mit.edu" NIS
domain. For keith or ruth to successfully connect to the display, they must add the principal
who started the server to their.Xauthorityfile. For example:

xauth add expo.lcs.mit.edu:0 SUN-DES-1 unix.expo.lcs.mit.edu@our.domain.edu
This system only works on machines which support Secure RPC, and only for users which
have set up the appropriate public/private key pairs on their system. See the Secure RPC doc-
umentation for details. To access the display from a remote host, you may have to do akeylo-
gin on the remote host first.

MIT-KERBEROS-5
Kerberos is a network-based authentication scheme developed by MIT for Project Athena. It
allows mutually suspicious principals to authenticate each other as long as each trusts a third
party, Kerberos. Each principal has a secret key known only to it and Kerberos. Principals
includes servers, such as an FTP server or X server, and human users, whose key is their pass-
word. Users gain access to services by getting Kerberos tickets for those services from a Ker-
beros server. Since the X server has no place to store a secret key, it shares keys with the user
who logs in. X authentication thus uses the user-to-user scheme of Kerberos version 5.

When you log in viaxdm, xdmwill use your password to obtain the initial Kerberos tickets.
xdm stores the tickets in a credentials cache file and sets the environment variable
KRB5CCNAMEto point to the file. The credentials cache is destroyed when the session ends
to reduce the chance of the tickets being stolen before they expire.

Since Kerberos is a user-based authorization protocol, like the SUN-DES-1 protocol, the
owner of a display can enable and disable specific users, or Kerberos principals. Thexhost
client is used to enable or disable authorization. For example,

xhost krb5:judy krb5:gildea@x.org
adds "judy" from the Kerberos realm of the local machine, and "gildea" from the "x.org"
realm.

THE AUTHORIZATION FILE
Except for Host Access control, each of these systems uses data stored in the.Xauthorityfile to gener-
ate the correct authorization information to pass along to the X server at connection setup. MIT-
MAGIC-COOKIE-1 and XDM-AUTHORIZATION-1 store secret data in the file; so anyone who can
read the file can gain access to the X server. SUN-DES-1 stores only the identity of the principal who
started the server (unix.hostname@domainwhen the server is started byxdm), and so it is not useful to
anyone not authorized to connect to the server.

Each entry in the.Xauthorityfile matches a certain connection family (TCP/IP, DECnet or local con-
nections) and X display name (hostname plus display number). This allows multiple authorization
entries for different displays to share the same data file. A special connection family (FamilyWild,
value 65535) causes an entry to match every display, allowing the entry to be used for all connections.
Each entry additionally contains the authorization name and whatever private authorization data is
needed by that authorization type to generate the correct information at connection setup time.

Thexauthprogram manipulates the.Xauthorityfile format. It understands the semantics of the connec-
tion families and address formats, displaying them in an easy to understand format. It also understands
that SUN-DES-1 and MIT-KERBEROS-5 use string values for the authorization data, and displays
them appropriately.

The X server (when running on a workstation) reads authorization information from a file name passed
on the command line with the−auth option (see theXservermanual page). The authorization entries
in the file are used to control access to the server. In each of the authorization schemes listed above, the
data needed by the server to initialize an authorization scheme is identical to the data needed by the
client to generate the appropriate authorization information, so the same file can be used by both pro-
cesses. This is especially useful whenxinit is used.

X Version 11 Release 6 2



XSECURITY(1) XSECURITY(1)

MIT-MAGIC-COOKIE-1
This system uses 128 bits of data shared between the user and the X server. Any collection of
bits can be used.Xdmgenerates these keys using a cryptographically secure pseudo random
number generator, and so the key to the next session cannot be computed from the current ses-
sion key.

XDM-AUTHORIZATION-1
This system uses two pieces of information. First, 64 bits of random data, second a 56 bit
DES encryption key (again, random data) stored in 8 bytes, the last byte of which is ignored.
Xdm generates these keys using the same random number generator as is used for MIT-
MAGIC-COOKIE-1.

SUN-DES-1
This system needs a string representation of the principal which identifies the associated X
server. This information is used to encrypt the client’s authority information when it is sent to
the X server. Whenxdm starts the X server, it uses the root principal for the machine on
which it is running (unix.hostname@domain, e.g.,
"unix.expire.lcs.mit.edu@our.domain.edu"). Putting the correct principal name in the.Xau-
thority file causes Xlib to generate the appropriate authorization information using the secure
RPC library.

MIT-KERBEROS-5
Kerberos reads tickets from the cache pointed to by theKRB5CCNAMEenvironment variable,
so does not use any data from the.Xauthority file. An empty entry must still exist to tell
clients that MIT-KERBEROS-5 is available.

FILES
.Xauthority

SEE ALSO
X(1), xdm(1), xauth(1), xhost(1), xinit(1), Xserver(1)

X Version 11 Release 6 3


	XSECURITY (1)

