CHAPTER 4

Base System Architecture

Ease on the surface requires power and speed edtbeand the modern, 32-bit
architecture of Windows 95 meets these requireménted from the limitations of MS-
DOS, Windows 95 preemptively multitasks for beR€ responsiveness—for example,
users no longer have to wait while the system &ofiliess—and delivers increased
robustness and protection for applications. Wind8&slso provides the foundation for a
new generation of easier, more powerful multithezh@2-bit applications. And most
important, Windows 95 delivers this power and rdbess on today’s average PC
platform while scaling itself to take advantageadtlitional memory and CPU cycles.

The mission of Windows 95 is to deliver a complétéegrated operating system that
offers modern, 32-bit operating system technolagy iacludes built-in connectivity
support. In addition to the high-level mission oindows 95, market requirements dictate
delivery of a high performance, robust, and congtyabackward-compatible operating
system that provides a platform for a new genematicapplications.

This chapter discusses the base system architacaceby Windows 95. The base
architecture covers low-level system services fanaging memory, accessing disk
devices, and providing robust support for runnipglizations.

Summary of Improvements over Windows 3.1

Improvements made to the base architecture of Wimdi5 result in many benefits to
users. Following is a summary of some of the kegyrowements:

¢ Afully integrated 32-bit protected-mode operatingsystem.The need for a
separate copy of MS-DOS has been eliminated.

* Preemptive multitasking and multithreading support. System responsiveness and
smooth background processing have been improved.

e 32-bit installable file systemsSystems such as VFAT, CDFS, and network
redirectors provide better performance, use of klagames, and an open
architecture that supports future growth.

e 32-bit device drivers.Available throughout the system, these drivergvdel
improved performance and intelligent memory use.

¢ A complete 32-bit kernel.Included are memory management, scheduler, and
process management.

2 Microsoft Windows 95 Reviewer’s Guide

* Improved system-wide robustness and cleanufhis more stable and reliable
operating environment also cleans up after an egijdin ends or crashes.

¢ More dynamic environment configuration. The need for users to tweak their
systems is reduced.

* Improved system capacity Included are better system resource limits to eskithe
problems Windows 3.1 users encountered when rummiritiple applications.

A Fully Integrated Operating System

The first thing that users of Windows 3.1 and MS®Will notice when they turn on their
computers is the lack of an MS-DOS command promgph fwhich they would formerly
have invoked Windows. Windows 95 is a tightly imtt@d operating system that features
a preemptive multitasking kernel which boots disettto the graphical Ul and also
provides full compatibility with the MS-DOS openagi system.

Many of the components of Windows 95 overcome &tigns inherent in MS-DOS and
Windows 3.1. However, these improvements do notecatithe cost of compatibility with
existing software, hardware, or computing environtse

A Preemptive Multitasking Operating System

The job of the operating system is to provide s@wito the applications running on the
system and, in a multitasking environment, to ptevsupport that allows more than one
application to run concurrently. In Windows 3.1,ltiple applications ran concurrently in
a cooperative multitasking manner. The Windows 3.1 operatindesysrequired an
application to check the message queue every ongevhile to allow the operating
system to give control to other running applicasiofpplications that did not check the
message queue on a frequent basis effectively logiythe CPU time and prevented
switching to another running task.

Windows 95 uses jpreemptive multitasking mechanism for running Win32—based
applications, and the operating system takes cloavay from or gives control to another
running task depending on the needs of the sydtalike Win16—based applications,
Win32-based applications do not neegigbd to other running tasks in order to multitask
in a friendly manner. (Winl6—based applicationsstittcooperatively multitasked for
compatibility reasons.) Windows 95 provides a meddma calledmultithreading that
allows Win32-based applications to take advantédieeopreemptive multitasking nature
of the operating system and that facilitates comrapplication designln operating-
system terms, a running Win32—based applicatiealied aprocess. Each process
consists of at least a sindlgead. A thread is a unit of code that can get a timeesiiom
the operating system to run concurrently with otingts of code. It must be associated
with a process, and it identifies the code pativ#s the process is run by the operating
system. A Win32-based application cgoawn (or initiate) multiple threads for a given
process. Multiple threads enhance the applicatiothie user by improving throughput
and responsiveness and aiding background processing

Because of the preemptive multitasking nature afdivs 95, threads of execution allow
background code to be processed in a smooth marmeexample, a word processing
application (process) can implement multiple thestdenhance operation and simplify
interaction with the user. The application mightéane thread of code responding to the
keys pressed on the keyboard by the user to eiméeacters in a document, while another

Chapter 4 Base System Architecture 3

thread is performing background operations sucpali-checking or pagination, and yet
another thread is spooling a document to the printthe background.

Some available Windows 3.1 applications providefiomality similar to that just
described. However, because Windows 3.1 does owetda a mechanism for supporting
multithreaded applications, the application devetdpas to implement a threading
scheme. The use of threads in Windows 95 facifittte adding of asynchronous
processing of information to applications by thagwrelopers.

Applications that use multithreading techniques alao take advantage of improved
processing performance available from a symmettilttipnocessing (SMP) system
running Windows NT, which allows different portioasthe application code to run on
different processors simultaneously. (Windows N&sua thread as the unit of code to
schedule symmetrically among multiple processors.)

For information about how Windows 95 runs MS-DOSsduhapplications in a
preemptive manner (as Windows 3.1 does today), 8/based applications in a
cooperative manner (as Windows 3.1 does today)Véin82—based applications in
a preemptive manner (as Windows NT does todaylaseesections in this chapter.

No CONFIG.SYS or AUTOEXEC.BAT?

Windows 95 doesn'’t need the separate CONFIG.SYSJIrOEXEC.BAT file required
by MS-DOS and Windows 3.1. Instead, Windows 9%itieliigent about the drivers and
settings it requires and automatically loads th@raypriate driver files or makes the
appropriate configuration settings during its boaicess. If a CONFIG.SYS or
AUTOEXEC.BAT file is present, the settings in thdiées are used to set the global
environment. For example, the default search patheodefault appearance of the
command prompt can be defined by using the ap@atepentries in the
AUTOEXEC.BAT file. While Windows 95 itself does noeed a CONFIG.SYS

or AUTOEXEC.BAT file, compatibility is maintainedith existing software or
environments that may require one or both of tffiéese

No MS-DOS?

Unlike Windows 3.1, Windows 95 is not dependenteal-mode operating system
components for its interaction with the file systétowever, the Windows 95 boot
sequence does begin by loading real-mode opersystgm components that are
compatible with MS-DOS. During the boot sequenappsrt for loading any real-mode
drivers and TSRs that are identified in a CONFIGS¥ AUTOEXEC.BAT file is
processed. Because these drivers explicitly loolofaise MS-DOS application support,
the real-mode operating system components of Wisdiwhelp maintain compatibility
with software that users already have on theiresgsiAfter the real-mode drivers are
loaded, Windows 95 begins loading the protect-mmukrating system components. In
some cases where a protect-mode Windows—based tripevided, Windows 95
actually removes real-mode drivers from memory. dioformation about this subject is
given later.

32-Bit Versus 16-Bit Components

To provide a good balance between delivering coititigt with existing applications
and drivers, decreasing the size of the operatistems working set, and offering

Microsoft Windows 95 Reviewer’s Guide

improved system performance over Windows 3.1, Wivil85 uses a combination of 32-
bit and 16-bit code. In general, 32-bit code isvited in Windows 95 to maximize the
performance of the system, while 16-bit code badarthe requirements for reducing the
size of the system and maintaining compatibilityhveixisting applications and drivers.
System reliability is also improved without a cwsterms of compatibility or increased
size.

The design of Windows 95 deploys 32-bit code wher@wsignificantly improves
performance without sacrificing application compditiy. Existing 16-bit code is retained
where it is required to maintain compatibility,winere 32-bit code would increase
memory requirements without significantly improvipgrformance. All of the 1/0
subsystems and device drivers in Windows 95, saafetworking and file systems, are
fully 32-bit, as are all the memory managementsaiteduling components (the kernel
and virtual memory manager). Figure 26 depicta¢feive distribution of 32-bit code
versus 16-bit code present in Windows 95 for sydtaral services.

- —_—
32-bit side | 16-bit side
(" USER16

- Existing Window™ 3.1 window
USER32 | Thunk bandwidth and menu management services,
plus new features (async input

model, new styles, etc).

N\
GDI32 GDI16
TrueType® rasterizer, print Existing Window™
subsystem, spooler, universal 3.1 graphics
graphics engine (DIBengine) management, plus new
Bezier, path, EMFs,
etc.
Kernel32
Thread services, synchronization (One way)
objects, memory management, <——B Kernel16

memory-mapped files, file 1/0, debu
services, console, comm, etc.

Figure 26. The relative code distribution in Windows95

As shown in the figure, the lowest-level servicesviled by the operating system kernel
are provided as 32-bit code. Most of the remaidiégit code consists of hand-tuned
assembly language, delivering performance thatsrisame 32-bit code used by other
operating systems available on the market todayyMianctions provided by

the Graphics Device Interface (GDI) have been mdge’R-bit code, including the
spooler and printing subsystem, the font rasteriemed the drawing operations performed
by the graphics DIB engine. Much of the window ngeraent code (User) remains 16-bit
to retain application compatibility.

In addition, Windows 95 improves upon the MS-DOS #vindows 3.1 environments by
implementing many device drivers as 32-bit protgetede code. Virtual device drivers
in Windows 95 assume the functionality providedimny real-mode MS-DOS-based
device drivers, eliminating the need to load tharvi5-DOS. This technique results in a
minimal conventional-memory footprint, improved foemance, and improved reliability
and stability of the system over MS-DOS-based deditvers.

Chapter 4 Base System Architecture 5

Virtual Device Drivers

A virtual device driver is a 32-bit, protected-mattéver that manages a system resource,
such as a hardware device or installed softwarthatanore than one application can use
the resource at the same time. To understand fimments available in Windows 95
over the combination of MS-DOS and Windows 3.hgips to have a basic
understanding of what virtual device drivers (VxRgg and the role they play in the
Windows 95 environment.

The termVxD refers to a general virtual device driver, wittepresenting the type of
device driver. For example, VDD is a virtual devaréver for a display device, a VTD is

a virtual device driver for a timer device, a VPDaivirtual device driver for a printer
device, and so on. Windows uses virtual devicesipport multitasking for MS-DOS—
based applications, virtualizing the different aade components on the system to make
it appear to each MS-DOS virtual machine (VM) tihdg executing on its own computer.
Virtual devices work in conjunction with Windows poocess interrupts and carry out I/O
operations for a given application without disragthow other applications run.

Virtual device drivers support all hardware devifmsa typical computer, including the
programmable interrupt controller (PIC), timer ati-memory-access (DMA) device,
disk controller, serial ports, parallel ports, kegld device, math coprocessor, and
display adapter. A virtual device driver can comtiiie device-specific code needed to
carry out operations on the device. A virtual deueiver is required for any hardware
device that has settable operating modes or redaitssover any period of time. In other
words, if the state of the hardware device canisripted by switching between multiple
applications, the device must have a corresponditigal device. The virtual device
keeps track of the state of the device for eacliGgijpn and ensures that the device is in
the correct state whenever an application continues

Although most virtual devices manage hardware, soiaeage only installed software,
such as an MS-DOS device driver or a terminatestagHesident (TSR) program. Such
virtual devices often contain code that either extad the software or ensures that the
software uses only data applicable to the currentiying application. ROM BIOS, MS-
DOS, MS-DOS device drivers, and TSRs provide desjmecific routines and operating
system functions that applications use to indiyegticess the hardware devices. Virtual
device drivers are sometimes used to improve thiemeance of installed software—for
example, the 80386 and compatible microprocessorsun the 32-bit protected-mode
code of a virtual device more efficiently than tt&bit real-mode code of an MS-DOS
device driver or TSR. In addition, performanceribanced by eliminating ring transitions
that result in executing 32-bit applications thatess 16-bit real-mode services, because
with virtual device drivers, the system can stapiiotected-mode.

Windows 95 benefits from providing more device drigupport implemented as a series
of VxDs in the Windows environment, instead of gsihe device drivers previously
available as real-mode MS-DOS device drivers. Ranatity that was previously
supported as MS-DOS device drivers but is now stpdas VxDs in Windows 95
includes the following components:

* MS-DOS FAT file system

e SmartDrive

¢ CD-ROM file system

¢ Network card drivers and network transport protecol
* Network client redirector and network peer server

e Mouse driver

6 Microsoft Windows 95 Reviewer’s Guide

* MS-DOS SHARE.EXE TSR
« Disk device drivers including support for SCSI dma
* DriveSpace (and DoubleSpace) disk compression

In summary, in Windows 95 VxDs provide the follogiiadvantages:

* Improved performance as a result of a 32-bit cath pnd the elimination or
reduction of the need to switch between real antepted mode

¢ Reduced conventional memory footprint by providiteyice driver and TSR
functionality as protected-mode components thatlegs extended memory

* Improved system stability and reliability compatedS-DOS device driver
counterparts

Virtual device drivers in Windows 95 can be ideetifby .VXD extensions, and virtual
device drivers from Windows 3.1 can be identifisd 886 extensions.

The System Architecture
Layout in Windows 95

Figure 27 illustrates the layout of the base systechitecture for Windows 95.
Components of the system are divided between RengdORing 3 code, offering different
levels of system protection. The Ring 3 code igqmied from other running processes by
protection services provided by the Intel processohitecture. The Ring 0 code consists
of low-level operating system services such adikhsystem and the virtual machine

manager.
Ring 3 (system VM)
Win32®
app) Winl6 . .
System serviceg app ng 3 ng 3
Win32® K | (MS-DOS (MS-DOS
app erne . VM VM
graphics))
winaze || window mgmt app
app
Ring 0
Protect-mode file system Virtual Machine Manager
VFAT, CDFS, SCSI, Network Pager, Scheduler, DPMI server

Figure 27. The integrated architecture of Windows 95which supports running MS-
DOS-based, Winl6-based, and Win32—-based applications

Figure 27 also depicts the way that MS-DOS-based18¥based, and Win32-based
applications run in the system. The following seetiliscusses the provisions that the
system makes for running these applications.

Chapter 4 Base System Architecture 7

Support for Winl6—Based Applications

Winl6-based (16-bit) applications run together initnunified address space and run in
a cooperatively multitasking manner, as they deeuiindows 3.1. Winl6-based
applications benefit from the preemptive multitagkof other system components,
including the 32-bit print and communications sudtegn and the improvements made in
system robustness and protection from the systeneke Windows 95.

Based on customer needs, resource needs, and maekk, three goals drove the
architectural design of Winl6—based applicatiorpsup compatibility, size, and
performance. Functionality adjustments, such asmpgively running Winl6-based
applications together in the Win16 subsystem oninthnWinl6—based applications

in separate VMs, were considered, but each of piierss considered failed to meet the
three design goals. The following discussion presidome insight into the architecture of
Windows 95 as far as running Winl6—based applinatip a fast, stable, and reliable way
is concerned.

Compatibility

Size

First and foremost, Windows 95 needs to run exgsiéifin16—based applications without
modification. This factor is extremely importantdristing users who want to take
advantage of the new functionality offered in Windd5, such as 32-bit networking, but
don’t want to have to wait until new Windows 95—lelea applications are available on
the market.

Windows 95 builds upon the Windows 3.1 platfornptovide support for running
existing Winl6-based applications and using exjsiifindows—based device drivers,
while providing support for the next generatior88tbit applications and components.
Windows 95 extends the Windows 3.1 architecturar@as that have little or no impact
on compatibility, as well as enhances the architecto deliver a faster, more powerful
32-bit operating system.

While many newer computer purchases are Intel 86d&8d computers with 4 MB or 8
MB (or more) of memory, a high percentage of 80386Based computers with 4 MB of
memory running Windows 3.1 are still in use. Tosup the needs of the market,
Windows 95 must run on a base platform of an [88386DX—based computer with 4
MB of RAM and provide access to its new features famctionality without requiring an
upgrade of existing hardware or the addition oferlRAM.

To meet its goals, Windows 95 is designed to oceupyprking set of components no
larger than Windows 3.1, thereby ensuring that\aityl6—based application running at a
perceived speed on a 4 MB or 8 MB (or greater) agempruns at the same (or higher)
speed under Windows 95 without suffering any pentmice degradation. To meet the
size goals of Windows 95, Winl16—based applicatronswithin a unified address space,
resulting in little overhead beyond that requirgd/indows 3.1 to support the running of
Windows—based applications. Running in a unifiedrags space allows Windows 95 not
only to fit on a 4 MB computer, but also to perfowell. The architecture of Windows 95
includes innovative design features, such as dyceiyiloadable VxDs, to decrease the
working set of components and memory requiremesesl by the operating system.

8 Microsoft Windows 95 Reviewer’s Guide

Meeting the size design goal (as well as meetiagttmpatibility goal) precluded the
strategies of running Winl16—based applicationssearate VM (by running a separate
copy of Windows 3.1 on top of the operating systetrnich would involve paying a
several megabyte “memory tax” for each applicate}0S/2 does, or of emulating
Windows 3.1 on top of the Win32 subsystem (whicluMd@lso involve paying a
“memory tax” for running Winl6—based applicatioas)Windows NT does.

Running Winl16-based applications in separate VMg Iiig expensive memory-wise.
This strategy would require separate GDI, USER,KBBNEL code in each VM that is
created, increasing the working set by as muchMB 2or each Winl6-based
application that is running (as is the case witH2ZX8r Windows). On a computer with 16
MB or more, this increase may not appear significelbwever, bearing in mind the
existing installed base of computers, running Widiased applications in their own
separate VMs in 4 MB of memory is impossible, amghing them in 8 MB with the level
of performance observed and expected under Win@aivss very difficult.

Performance

Protection

Users expect their existing Win16—based applicatiorrun as fast as or faster than
they do under Windows 3.1. Both Winl16—based apiitinoa and MS-DOS-based
applications benefit from the 32-bit architectufé\indows 95, including the increased
use of 32-bit device driver components and 324disgstems.

Winl6-based applications run within a unified addrgpace and interact with the system
much as they do under Windows 3.1. Running Winl6etlapplications in separate

VMs requires either mapping Win16 system componengach address space, as
Windows NT does, or providing a separate copy ohesystem component in each
address space, as 0OS/2 for Windows does. The aalitnemory overhead required for
Winl6 system components in each VM to run a Winh&el application has a negative
impact on system performance.

Windows 95 balances the issue of system proteetiohrobustness with the desire for

better system performance and improves on theraystbustness of Windows 3.1. The
improvements in this area are briefly discussetiénnext section and are described in
greater detail in Chapter 5, “Robustness.”

The support for running Winl6—based applicatiorssijgles protection of the system
from other running MS-DOS—based applications or 3®irbased applications. Unlike
Windows 3.1, an errant Winl6—based application caaasily bring down the system or
other running processes on the system. While Wib&88ed applications benefit the most
from system memory protection, the robustness irgrents in Windows 95 result in a
more stable and reliable operating environment WWardows 3.1.

Winl6-based applications run within a unified addrgpace and cooperatively multitask
as they do under Windows 3.1. The improvements rt@degerall system-wide
robustness greatly enhance the system’s abilitgdover from an errant application, and
improved cleanup of the system lessens the likethaf application errors. General
protection faults (GPFs) under Windows 3.1 are mostmonly caused by an application
overwriting its own memory segments, rather thamambypplication overwriting memory
belonging to another application. Windows 3.1 did recover gracefully when a
Windows—based application crashed or hung. WheRR €aused the system to halt an

Chapter 4 Base System Architecture 9

application, the system commonly left allocatedueses in memory, causing the system
to degenerate.

Because of improved protection in Windows 95, aargrWinl6—based application
cannot easily bring down either the system as denwoother running MS-DOS or
Win32-based applications. At most, it can impabeotunning Winl6-based
applications.

Other protection improvements include the use passe message queues for each
running Win32-based application. The use of a sgpanessage queue for the Winl16
address space and for each running Win32—-basetainh provides better recovery of
the system and doesn’t halt the system if a Win&6ed application hangs.

Robustness Improvements

System robustness when running Winl6—based agphsatinder Windows 95 is greatly
improved over Windows 3.1. Windows 95 now tracksorgces allocated by Win16—
based applications and uses the information toalpathe system after an application
exits or ends abnormally, thus freeing up unussedueees for use by the rest of the
system.

Robustness improvements are discussed in Chapteobystness.”

Support for MS-DOS—-Based Applications

Protection

Windows 95 includes many improvements over Wind8wisfor running MS-DOS—
based applications. As with Windows 3.1, each MSSBliased application runs in its
own VM. A VM takes advantage of the Intel 80386dduigher) architecture, which
allows multiple 8086-compatible sessions to runlenCPU and thereby allows existing
MS-DOS applications to run preemptively with thetref the system. As with Windows
3.1, the use of virtual device drivers provides nwn regulated access to hardware
resources, causing each application running in at¥khink that it is running on its own
individual computer and allowing applications nesijned to multitask to run
concurrently with other applications.

Windows 95 provides a flexible environment for rinthMS-DOS—-based applications. In
Windows 3.1, users sometimes needed to exit Windowsn MS DOS-based
applications that were either ill-behaved or regdidirect access to system resources.
MS-DOS-based application compatibility is improwedVindows 95 to the point that
almost all MS-DOS—based applications should rureaidindows 95.

A detailed discussion of the improvements madéecsupport for running MS-DOS—
based applications within the Windows environmengrovided in Chapter 6, “Support
for Running MS-DOS-based Applications.”

In Windows, VMs are fully protected from one anathaes well as from other applications
running on the system. This protection preventargiMS-DOS—based applications from
overwriting memory occupied or used by system camepts or other applications. If an
MS-DOS-based application attempts to access meoutside of its address space, the
system notifies the user and terminates the MS-I@sed application.

10 Microsoft Windows 95 Reviewer’s Guide

Robustness Improvements

System robustness is greatly improved when runki8gDOS—-based applications in
Windows 95. Robustness is discussed in ChaptdR@&hustness.”

Support for Win32—Based Applications

Win32-based applications can fully exploit and Bigsggnificantly from the design of
the Windows 95 architecture. In addition, each Wirt3ased application runs in its own
fully protected, private address space. This sisapeevents Win32—based applications
from crashing each other, from crashing running M3S—based applications, from
crashing running Winl16—based applications, or fovashing the Windows 95 system as
a whole.

Win32-based applications feature the following lignever Win16—based applications
in Windows 95 and over Windows 3.1:

* Preemptive multitasking

* Separate message queues

e Flat address space

e Compatibility with Windows NT
* Long filename support

¢ Memory protection

¢ Robustness improvements

Preemptive Multitasking

Unlike the cooperative multitasking used by Winléséd applications under Windows
3.1, 32-bit Win32—-based applications are preemigtiveiltitasked in Windows 95. The
operating system kernel is responsible for schaduhe time allotted for running
applications in the system, and support for preamphultitasking results in smoother
concurrent processing and prevents any one appliceitom utilizing all system
resources without permitting other tasks to run.

Win32-based applications can optionally implembrgdds to improve the granularity at
which they multitask within the system. The usé¢hwéads by an application improves the
interaction with the user and results in smootheititasking operation.

Separate Message Queues

Under Windows 3.1, the system uses the point wheapalication checks the system
message queue as the mechanism to pass contraitteatask, allowing that task to run
in a cooperative manner. If an application doeshéick the message queue on a regular
basis, or if the application hangs and thus prevetiter applications from checking the
message queue, the system keeps the other tablesspstem suspended until the errant
application ends.

Each Win32—-based application has its own messageecand is thus not affected by the
behavior of other running tasks on their own messagues. If a Win16—-based
application hangs, or if another running Win32—llagpplication crashes, a Win32—
based application continues to run preemptivelyeardstill receive incoming messages
or event notifications.

Chapter 4 Base System Architecture 1

Message queues are discussed in more detail in€@rapg'Robustness.”

Flat Address Space

Win32-based applications benefit from improved genfance and simpler construct
because they can access memory in a linear faghithrer than being limited to the
segmented memory architecture used by MS-DOS amdaMis 3.1. To provide a means
of accessing high amounts of memory using a 1&didtessing model, the Intel CPU
architecture provides support for accessing 64kk&wf memory, calledegments, at a
time. Applications and the operating system sudfperformance penalty under this
architecture because of the manipulations requiyetthe processor for mapping memory
references from the segment/offset combinatiohégohysical memory structure.

The use of a flat address space by the 32-bit caeme in Windows 95 and by Win32—
based applications allows application and devideeddevelopers to write software
without the limitations or design issues inherenthie segmented memory architecture
used by MS-DOS and Windows 3.1.

Compatibility with Windows NT

Win32-based applications that exploit Win32 APImomn to Windows 95 and
Windows NT can run without modification on eithdatiorm on Intel-based computers.
The commonality of the Win32 API provides a corgistprogrammatic interface and
allows application developers to leverage a sidgheelopment effort to deliver software
that runs on multiple platforms. It also providealeability of applications and broadens
the base of platforms available for running IS\tastom applications with minimal
additional effort.

Application developers are encouraged to develgtiGgions either under Windows 95
or under Windows NT and to test compatibility ontbplatforms.

Long Filename Support

Win32-based applications that call the file I/Odtions supported by the Win32 API
benefit from the ability to support and manipulilienames of up to 255 characters with
no additional development effort. To ease the bufehe application developer, the
Win32 APIs and common dialog support handle thekwedmanipulating long filenames,
and the file system provides compatibility with ND®S and other systems by
automatically maintaining the traditional 8.3 fitane.

Memory Protection

Each Win32-based application runs in its own pevaddress and is protected by the
system from other applications or processes tleatltaming in the system. Unlike errant
Winl6-based applications under Windows 3.1, eMéint32—based applications under
Windows 95 end only themselves, instead of bringiogyn the entire system if they
attempt to access memory belonging to another egii.

The use of separate message queues for Win32—-apphchtions also ensures that the
system continues to run if an application hangst@ps responding to messages or events.

12 Microsoft Windows 95 Reviewer’s Guide

Robustness Improvements

Win32-based applications benefit from the higheetll of system robustness supported
under Windows 95. Resources allocated for each ¥¥ib&sed application are tracked on
a per-thread basis and are automatically freed weeapplication ends. If an application
hangs, users can perfornhogal reboot operation to end the hung application without
affecting other running tasks, and the system thesins up properly.

Detailed information about robustness enhancenegisen in Chapter 5, “Robustness.”

32-Bit File System Architecture

The file system in Windows 95 has been redesigoedipport the characteristics and
needs of the multitasking nature of its kernel. €hanges present in Windows 95 provide
many benefits to users and have the following tesul

¢ Improved ease of useEase of use is improved by the support of longéilees
because users no longer need to reference filedsebWS-DOS 8.3 filename
structure. Instead they can use up to 255 chagatédentify their documents. Ease
of use is also improved by hiding the filename psiens.

* Improved performance. As in Windows for Workgroups 3.11, file I/O penfoance
is improved dramatically over Windows 3.1 by featgr32-bit protected-mode code
for reading information from and writing informatido the file system, reading from
and writing to the disk device, and intelligent I8i2e€aching mechanisms (a full 32-
bit code path is available from the file systenthi® disk device).

« Improved system stability and reliability. File system components implemented as
32-bit protected-mode device drivers offer improggdtem stability and reliability
over their MS-DOS device driver counterparts beeahsy can remain in protected
mode for code execution and because they leverasting driver technology first
implemented in Windows NT and also available in tdiws for Workgroups 3.11.

Architecture Overview

Windows 95 features a layered file system architecthat supports multiple file systems
and provides a protected-mode path from the agjaitéo the media device, resulting in
improved file and disk 1/0 performance over Windd@vé. The following features are
included in the new file system architecture:

¢ Win32 API support

¢ Long filename support

e 32-bit FAT file system

¢ 32-bit CD-ROM file system

¢ Dynamic system cache for file and network I/O

¢ Open architecture for future system support

e Disk device driver compatibility with Windows NT

Figure 28 depicts the file system architecture usewindows 95.

Chapter 4 Base System Architecture 13

Installable File System (IFS) Manager

Third-party file
system
component

32-bit FAT 32-bit CD File Network
(VFAT) System (VCDFS) Redirector

Block 10 Subsystem

‘ Input/Output Supervisor (I0S)

‘ SCsI Stub

‘ Other Layers ‘

Miniport

Port Driver

Figure 28. The file system architecture
The file system architecture in Windows 95 is magef the following components:

¢ Installable File System (IFS) ManagerThe IFS Manager is responsible for
arbitrating access to different file system compuse

« File system drivers.The file system drivers layer includes accesdéaflocation
table (FAT)-based disk devices, CD-ROM file systeamsl redirected network
device support.

¢ Block I/O subsystem.The block 1/O subsystem is responsible for intengowith
the physical disk device.

Components of each of these layers are examint inext three sections.

The Installable File System Manager

Under MS-DOS and Windows 3.1, the MS-DOS Int 2Xhriupt is responsible for
providing access to the file system to manipulég¢eiiformation on a disk device. To
support redirected disk devices, such as a netdiivk or a CD-ROM drive, other
system components, such as the network rediregtarld hook the Int 21h function so
that it could examine a file system request to reitee whether it should handle the
request or the base file system should. Althoughrtiechanism provided the ability to
add additional device drivers, some add-on compsneere ill-behaved and interfered
with other installed drivers.

Another problem with the MS-DOS—based file systeas ¥he difficulty in supporting the
loading of multiple network redirectors to providencurrent access to different network
types. Windows for Workgroups provided supportriorning the Microsoft network
redirector at the same time as an additional nétwextirector, such as Novell NetWare,
Banyan VINES, or SUN PC-NFS. However, support toming more than two network
redirectors at the same time was not provided.

The key to friendly access to disk and redirectedaks in Windows 95 is the Installable
File System (IFS) Manager. The IFS Manager is nesidte for arbitrating access to file
system devices, as well as other file system desooaponents.

14

Microsoft Windows 95 Reviewer’s Guide

File System Drivers

Windows 95 includes support for the following fdgstems:
¢ 32-bit file allocation table (VFAT) driver
e 32-bit CD-ROM file system (CDFS) driver

« 32-bit network redirector for connectivity to Migoft network servers, such as
Windows NT Server, along with a 32-bit network redtor to connect to Novell
NetWare servers

In addition, third parties will use the IFS Managétls to provide a clean way of
concurrently supporting multiple device types addiag additional disk device support
and network redirector support.

The 32-Bit Protected-Mode FAT File System

The 32-bit VFAT driver provides a 32-bit protectenbde code path for manipulating the
file system stored on a disk. It is also re-enteamt multithreaded, providing smoother
multitasking performance. The 32-bit file accedsetris improved over that provided
originally with Windows for Workgroups 3.11 anddsmpatible with more MS-DOS-
device drivers and hard disk controllers.

Benefits of the 32-bit file access driver over M®B-based driver solutions include the
following:

e Dramatically improved performance and real-modé& daching

¢ No conventional memory used (replacement for readlenSmartDrive)
e Better multitasking when accessing information @k avith no blocking
¢ Dynamic cache support

Under MS-DOS and Windows 3.1, manipulation of tAd Fand writing to or reading

from the disk is handled by the Int 21h MS-DOS fiortand is 16-bit real-mode code.
Being able to manipulate the disk file system fimmotected mode removes or reduces the
need to transition to real mode in order to writ®timation to the disk through MS-DOS,
which results in a performance gain for file l/Qess.

The 32-bit VFAT driver interacts with the block 1&Dibsystem to provide 32-bit disk
access to more device types than are supportedifiyows 3.1. Support is also provided
for mapping to existing real-mode disk drivers timaty be in use on a user’s system. The
combination of the 32-bit file access and 32-tskdiccess drivers results in significantly
improved disk and file 1/O performance.

The 32-Bit Cache

The 32-bit VFAT works in conjunction with a 32-Ipitotected-mode cache (VCACHE)
driver and replaces and improves on the 16-bitmeade SmartDrive disk cache software
provided with MS-DOS and Windows 3.1. The VCACHHEvdr features a more
intelligent algorithm for caching information rexdm or written to a disk drive than
SmartDrive, and results in improved performancemigading information from cache.
The VCACHE driver is also responsible for managimg cache pool for the CD-ROM
File System (CDFS) and the provided 32-bit netwexkirectors.

Another big improvement VCACHE provides over SmaitP is that the memory pool
used for the cache is dynamic and is based omtlerat of available free system

Chapter 4 Base System Architecture 15

memory. Users no longer need to statically alloedtock of memory to set aside as a
disk cache because the system automatically atlecatdeallocates memory used for the
cache based on system use. Because of intelligeheaise, the performance of the
system also scales better than with Windows 3Wiadows for Workgroups 3.11.

The 32-Bit Protected-Mode CD-ROM File System

The 32-bit protected-mode CD-ROM file system (CDF®)lemented in Windows 95
provides improved CD-ROM access performance owvereghl-mode MSCDEX driver in
Windows 3.1 and is a full 32-bit ISO 9660 CD filsseem. The CDFS driver replaces the
16-bit real-mode MSCDEX driver and features 32pbdgtected-mode caching of CD-
ROM data. The CDFS driver cache is dynamic andeshidre cache memory pool with
the 32-bit VFAT driver, requiring no configurati@n static allocation on the part of the
user.

Benefits of the new 32-bit CDFS driver include fokowing:

¢ No conventional memory used (replaces real-mode IS

* Improved performance over MS-DOS—based MSCDEX aatimode cache
¢ Better multitasking when accessing CD-ROM informiatiwith no blocking

¢ Dynamic cache support to provide a better balareted®en providing memory to run
applications versus memory to serve as a disk cache

If MSCDEX is specified in the AUTOEXEC.BAT, the 32t CDFS driver takes over the
role played by the MSCDEX driver and communicatéh the CD-ROM device. The use
of MSCDEX is no longer necessary under Windows 95.

Users of CD-ROM multimedia applications benefitaghg from the new 32-bit CDFS.
Their multimedia applications run smoother andiinfation is read from the CD-ROM
quicker, providing improved performance.

The Block I/O Subsystem

The block I/O subsystem in Windows 95 improves uft@n32-bit disk access fast-disk
device architecture in Windows 3.1 and therefonprowes performance for the entire file
system and a broader array of device support.

As shown in Figure 29, the components of the blé@ksubsystem include the high-level
I/O Supervisor (10S) layer, which provides an ifdee to the block I/O subsystem for the
higher layer components; the port driver, whichrespnts a monolithic disk device
driver; the SCSI layer, which provides a standatdrface and driver layer to provide
device-independent control code for SCSI deviced;the SCSI mini-port driver, which
contains the device-dependent control code resplenfair interacting with individual
SCSiI controllers.

16

Microsoft Windows 95 Reviewer’s Guide

Block 10 Subsystem

Input/Output Supervisor (I0S)

‘ Other Layers

Miniport

‘ SCSI Layer ‘

Port Driver ‘

Figure 29. The architecture of the block 1/0O subsyem
The block I/O subsystem provides the following sapjin Windows 95:

A fully Plug and Play—enabled architecture
e Support for mini-port drivers that are binary cotiipla with Windows NT
e Support for Windows 3.1 fast disk drivers for baekd/compatibility

* Protected-mode drivers that take over real-modeIMs device drivers when safe
to do so

e The ability to support existing MS-DOS real-modskdilevice drivers for
compatibility

The following sections examine the different arésag make up the block 1/0 subsystem.
The explanations are provided to facilitate an ustd@ding of the components, bearing in
mind that the configuration of the disk device drilayers is isolated from the user.

The 1/O Supervisor

The 1/0 Supervisor (I0S) provides services todijstems and drivers. The 10S is
responsible for the queuing of file service regsiestd for routing the requests to the
appropriate file system driver. The I0S also pregidsynchronous notification of file
system events to installed drivers.

The Port Driver

The port driver is a monolithic 32-bit protectedaeadriver that communicates with a
specific disk device, such as a hard disk controliis driver is specifically for use with
Windows 95 and resembles the 32-bit disk access @fak) driver used in Windows 3.1,
such as the WDCTRL driver used for Western Digitahpatible hard disk controllers. In
Windows 95, the driver that communicates with ID&IR hard disk controllers and
floppy disk controllers is implemented as a poivelr. A port driver provides the same
functionality as the combination of the SCSI mamagel the mini-port driver.

The SCSI Layer

The SCSI layer applies a 32-bit protected-modearsad driver model architecture

to communication with SCSI devices. The SCSI lgyewides all the high-level
functionality that is common to SCSI-like devicesldhen uses a mini-port driver to
handle device-specific I/0 calls. The SCSI Managgart of this system and provides
compatibility support for using Windows NT mini-pairivers.

Chapter 4 Base System Architecture 17

The Mini-Port Driver

The mini-port driver model used in Windows 95 siifigg the task of writing device
drivers for disk device hardware vendors. BecaseSICSI Stub provides the high-level
functionality for communicating with SCSI devicekésk device hardware vendors need to
create only a mini-port driver that is tailoredtheir own disk device. The mini-port

driver for Windows 95 is 32-bit protected-mode caahel is binary compatible with
Windows NT mini-port drivers, another factor thamhglifies the task of writing device
drivers. Binary compatibility with NT also resultsa more stable and reliable device
driver because hardware vendors need to mainté&ymooe code base for device support.
Users of Windows 95 also benefit because many pori-drivers are already available

for Windows NT.

Support for IDE, ESDI, and SCSI Controllers

Through the use of either a port driver or a minitfriver, support for a broad array of
disk devices will be available for Windows 95, unding popular IDE, ESDI, and SCSI
disk controllers. Users won't have to decide whetheaise a port driver or a mini-port
driver because the driver is provided by the hardwandor and configuration of the
driver is handled by the Windows 95 system.

The Real-Mode Mapper

To provide binary compatibility with real-mode MS=a3—based disk device drivers for
which a protected-mode counterpart does not exiétindows 95, the block I/O
subsystem provides a mapping layer to allow théegted-mode file system to
communicate with a real-mode driver as if it wegr@tected-mode component. The
layers above and including this real-mode mapp&tNIRare protected-mode code, and
the real-mode mapper translates file 1/O requests protected mode to real mode so
that the MS-DOS device driver can perform the @gksiead or write operation from or to
the disk device. An example of when the real-modpmer would come into play is when
real-mode disk-compression software is runningapdotected-mode disk-compression
driver is not available.

Long Filename Support

The use of long filenames of up to 255 characteindows 95 overcomes the
sometimes cryptic 8.3 MS-DOS filename conventioth allows more user-friendly
filenames. MS-DOS 8.3 filenames are maintainedteacked by the system to provide
compatibility with existing Win16—based and MS-D®&sed applications that
manipulate only 8.3 filenames, but as users migma¥in32—based applications, the use
of 8.3 filename conventions is hidden from the user

Long filenames are supported by extending the MSSP®AT file system and using bits
and fields that were previously reserved by theatjreg system to add special directory
entries that maintain long filename informationtdhding the MS-DOS FAT layout,
rather than creating a new format, allows usergtall and use Windows 95 on existing
disk formats without having to change their diskisture or reformat their drives. This
implementation provides ease of use and allowsdujuwowth while maintaining
backward compatibility with existing applications.

18 Microsoft Windows 95 Reviewer’s Guide

Because Windows 95 simply extends the FAT structarg filenames are supported on
disks as well as hard disks. If a file on a diskt thas a long filename is viewed on a
computer that is not running Windows 95, only the fiename representation is seen.

Figure 30 shows a disk directory with long filenanighown graphically in Figure 14)
and their corresponding 8.3 filename mappings ocomaputer running Windows 95.
Volume in drive C is MY HARDDISK

Volume Serial Number is 1E30-830F
Directory of C:\Long Filename Directory

<DIR> 07-11-94 10:02a .
<DIR> 07-11-94 10:02a ..

4THQUART XLS 147 05-11-94 12:25a 4th Qua rter Analysis.xls

BOSS'SBI TXT 147 05-11-94 12:25a Boss's birthday card.txt

1994FINA DOC 147 05-11-94 10:35a 1994 Fi nancial Projections.doc

FISCALYE <DIR> 07-11-94 10:02a Fiscal Year Information

COMPANYL BMP 478 03-27-94 12:00a Company Logo.bmp

SHORTC~2 PIF 967 02-16-95 4:55p Shortcu t to MS-DOS Application.pif

NEWWAVES WAV 0 06-14-94 1:14p New Wav e Sound.wav

NEWVID~1 AVI 0 06-14-94 1:15p New vid eo.avi

DIRECTIO DOC 147 05-11-94 12:25a Directi ons to company picnic.doc
8 file(s) 2,033 bytes

3dir(s) 134,643,712 bytes free

Figure 30. A directory listed from the command pronpt, showing both 8.3 and long
filenames

Support for Existing Disk Management Utilities

For existing disk management utilities to recogrand preserve long filenames, utility
vendors need to revise their software productsrddift is working closely with utilities
vendors and is documenting long filename suppattisimplementation as an extension
to the FAT format as part of the Windows 95 SofevBevelopment Kit (SDK).

Existing MS-DOS—-based disk management utilities tienipulate the FAT format,
including disk defragmenters, disk bit editors, anthe tape backup software, may not
recognize long filenames as used by Windows 95naang destroy long filename entries
in the FAT format. However, no data is lost if tbhag filename entry is destroyed
because the corresponding system-defined 8.3 fileria preserved.

Hidden File Extensions

Like Windows 3.1, Windows 95 uses file extensianassociate a given file type with an
application. However, to make it easier to manifgufdes, file extensions are hidden
from users in the Windows 95 shell and in the Wimsl&xplorer, and instead, icons are
used in the Ul in Windows 95 to differentiate trecdments associated with different
applications. Information about file type associas is stored in the Registry, and the
associations are used to map a given file withidbe that represents the document type.
(For compatibility reasons, Windows 95 must traitdnfame extensions for use with
existing MS-DOS and Winl6—based applications.)

In addition to hiding filename extensions in thendbws 95 shell and the Windows
Explorer, application developers can hide filenafnes users in their applications.
Mechanisms for hiding filenames are documentetiénWwindows 95 SDK. A good
Windows 95 application makes use of these mechanfisrmhandling files to be
consistent with the rest of the Windows 95 envirentn

Chapter 4 Base System Architecture 19

Additional File Date/Time Attributes

To further enhance the file system, Windows 95 tadis additional date/time attributes
for files that MS-DOS does not track. Windows %cks the date/time when a new file
was created, the date/time when a file was modified the date when a file was last
opened. These file attributes are displayed irfil's property sheet, as shown in Figure

31.
1994 Financial Projections Properties HE
General |
19594 Financial Projections
Type: Microzoft ‘Word 6.0 Document

Location: Long Filename Directory
Size: 147 bytes [147 bytez)

M5-D0S name: 1934FINADOC

Created: tonday, July 17,1994 10:02:55 AM
Modified: wiednesday, May 17, 1994 10:35: 28 &M
Accessed: Tuesday, Mowember 01, 1994
Attributes: r] ™ Hidden

W tuchive ™ Spstem

0K I Cancel I Apply |

Figure 31. The properties for a file, showing the ew file date/time attributes

Utilities vendors can take advantage of this addél date/time information to provide
enhanced backup utilities—for example, to use a&batechanism when determining
whether a given file has changed.

Coordinated Universal Time Format

MS-DOS has traditionally used the local time of toenputer as the time stamp for the
directory entry of a file, and continues to usealdame for files stored on the local
system. However, Windows 95 supports the use ofdoedinated universal time (UTC)
format for accessing or creating information onwek file servers. This format provides
the superior, more universal tracking of time infiation required by networks that
operate across time zones.

Exclusive Access for Disk Management Tools

Disk management utilities, such as disk defragnmmengector editors, and disk-
compression utilities, don’t get along well with Mdbws 3.1. File system programs, such
as CHKDSK and DEFRAG, require exclusive acceshedite system to minimize the
disk access complexities that are present in aitagking environment where disk 1/0
occurs. For example, without exclusive accessealtbk, data corruption might occur if a
user requests that a disk operation move informatiothe disk at the same time that
another task is accessing that information or mgitither information to disk. However,
Windows 3.1 and MS-DOS do not provide a means ofroting access to the disk, so
users have been forced to exit Windows and enteDI@S to run disk management
utilities.

20 Microsoft Windows 95 Reviewer’s Guide

The file system in Windows 95 has been enhancedpport the use of Windows—based
disk management utilities by permitting exclusieeess to a disk device. Exclusive disk
access is handled as part of the file system thraugew API mechanism and can be used
by utilities vendors to write Windows—based disknagement utilities. Microsoft is
encouraging third-party utilities vendors to usis thPl mechanism to move existing MS-
DOS-based utilities to Windows, and is also usirig deliver disk management utilities
as part of Windows 95.

For example, this mechanism is used by the Diskdgefienter (Optimizer) utility
delivered as part of Windows 95. Unlike the diskagment utility used under the
combination of MS-DOS and Windows 3.1, the Diskfagfmenter in Windows 95 can
be run from the Windows 95 shell and can even herrthe background while users
continue to work on their systems.

DriveSpace Disk Compression

Windows 95 provides built-in support for DriveSpatigk compression. Compatible with
DoubleSpace and DriveSpace disk compression praviith MS-DOS, Windows 95
provides base compression in the form of a 32iltital device driver that delivers
improved performance over previously available-reatle compression drivers and frees
conventional memory for use by MS-DOS-based appics. Users of MS-DOS-based
DoubleSpace and DriveSpace don’t need to changeetkisting compressed volume file
(CVF) and thus don't need to take any special astishen they install Windows 95.

As shown in Figure 32, the DriveSpace disk compoes®ol provided with Windows 95
is GUI-based and provides the ability to comprephysical hard drive or removable
floppy drive. The Compress a Drive dialog box,whadn Figure 33, graphically depicts
the amount of free space available before compmessid the estimated space available
after compression.

DriveSpace [_]

Diive Advanced Help

Drives on this computer:

= 3% Flappy (4] 35" Flappy drive
= 5% Floppy (8] 5.25" Floppy drive

= My harddisk [C) Physical drive

[v

Figure 32. The DriveSpace disk compression tool

Chapter 4 Base System Architecture 21

Compress a Drive HE
Compreszing drive C will make it appear larger and contain more free
pace.

—Dnve Cnow]—— [Drive C [after compreszsion)
O FreeSpace; 12593 MB O Free Space; 31469 MB*
B UsedSpace; 76.30MB B UsedSpace; 7G.30MB*
Capacity: 20223 MB Capacity: 33039 MB*
* estimated
DOptions... | LCloze |

Figure 33. The Compress a Drive dialog box, whichrgphically displays free space

System Capacity Improvements

Windows 95 provides better system capacity for ingnivS-DOS and Winl6-based
applications than Windows 3.1. A number of intermathancements to the base system
prevent internal system resources from being exbdwss quickly as was possible when
running multiple Windows—based applications undéndiiws 3.1.

Many of the artificial limitations present in Winds 3.1 were due to its architecture or
internal data structures, which were in turn laygkle to the fact that Windows 3.1 had to
run on an Intel 80286—based computer. These limitathave for the most part been
overcome in Windows 95, to the benefit of usersals as ISVs and other developers.

System Resource Limitation Improvements

Many users have encounter®dt of Memory error messages when running multiple
Windows—based applications under Windows 3.1, ¢iveagh the system still reports
several megabytes of available free memory. Tylyithése messages were displayed
because the system could not allocate an intereaiary resource in a Windows API
function call due to lack of available space iregion of memory called laeap.

Windows 3.1 maintains heaps for system componetiiisdccGDI and USER. Each heap is
64 KB in size and is used for storing GDI or memalsject information allocated when

an application calls a Windows API function. Thecamt of space available in the
combination of these two heaps is identified agtreentage of system resources that are
free and is displayed in the About dialog box ing?am Manager and other Windows
applications, as shown in Figure 34.

22

Microsoft Windows 95 Reviewer’s Guide

= About Program Manager

S Program M anager

; Eé!
I

)
.
'
EEE' Microsoft Windows for Workgroups

Microscer. Yersion 3.11
WINDOWS. Copyright © 1985-1993 Microsoft Corporation

Thiz product iz licensed to:
Brent Ethington

Microsoft Corporation
Product Number:

Memony: 7.918 KB Free
System Resources: 59% Free

Figure 34. The About dialog box in Program Managein Windows 3.1, showing free
system resources

The percentage of free system resources display iAbout dialog box is calculated
using an internal algorithm to represent the agafeegercentage of free memory in the
GDI and USER heaps. When the free system resopazesntage gets too low, users
commonly see a@ut of Memory error message, even though the amount of free memo
shown in the About dialog box is still quite higrhis error can result from low memory
in either the GDI or USER heap (or both).

To help reduce the system resource limitation,raber of the data structures stored in
the 16-bit GDI and USER heaps in Windows 3.1 haaenlmoved out of these heaps and
stored in 32-bit heaps, providing more room forrd@aining data elements to be
created. As a result, system resources decreasralgdly in Windows 95 than they did

in Windows 3.1.

For compatibility, not all objects were removednfrthe 16-bit GDI or USER heap and
placed in a 32-bit heap. For example, some Windbased applications manipulate the
contents of the GDI heap directly, bypassing thaliphed API mechanisms for doing so,
because their developers think direct manipulaticreases performance. However,
because these applications bypass the Windows &Bhamisms, moving their data from
the existing heap structures and placing them ibiBBeaps would cause these
applications to fail because of memory access titia.

Winl6-based and Win32—-based applications use the &DI and USER heaps. The
impact of removing selected items from the heapsal@sely examined and objects were
selected based on the biggest improvement thatl dmubchieved while affecting the
fewest number of applications. For example, the G&4dp can quickly become full
because of the creation of memory-intensive regluects that are used by applications
for creating complex images and by the printingsystem for generating complex output.
Region objects were removed from the 64 KB 16-liM Geap and placed in a 32-bit
heap, benefiting graphic-intensive applications praviding for the creation of more
smaller objects by the system. Windows 95 imprdkiesystem capacity for the USER
heap by moving menu and window handles to the BRMBER heap. Instead of the total
limit of 200 for these data structures in Windows, 3Vindows 95 allows 32,767 menu
handles and an additional 32,767 window hanpéegrocess rather than system-wide.

In addition to moving information from the GDI atdS8ER heaps, robustness
improvements in Windows 95 that facilitate systdeanup of unfreed resources also
relieve system resource limitations. When Windo®wsi8termines that the owner and

Chapter 4 Base System Architecture 23

other ended processes no longer need the resanneesnory, Windows 95 cleans
up and deallocates leftover data structures. Thestness improvements in Windows 95
are discussed in Chapter 5, “Robustness.”

Better Memory Management

Windows 95 improves addressibility to provide be#tecess to physical memory, as well
as improves upon the swapfile implementation predioh Windows 3.1 to support
virtual memory supplementation of physical memory.

Linear Memory Addressing for
Win32—-Based Applications

To support a 16-bit operating environment, thellptecessor architecture uses a
mechanism, callesegments, to reference memory by using a 16-bit segmentessdand

a 16-bit offset address within the segment. A seqnse64 KB in size, and applications
and the operating system pay a performance penbby they access information across
segments. For 32-bit operating system functionalitgt Win32—based applications,
Windows 95 addresses this issue by using the 3@abibilities of the Intel 80386 (and
above) processor architecture to support a flaali memory mode. A linear addressing
model simplifies the development process for apitim developers, removes the
performance penalties imposed by the segmented mpearhitecture, and provides
access to a virtual address space that permitdithessing of up to 4 GB (4 gigabytes, or
4 billion bytes) of memory. Windows 95 uses thé fleemory model internally for 32-bit
components and virtual device drivers.

Compatibility with the Windows NT Memory Model

Windows 95 uses the same memory model architeati®indows NT, providing high-
end operating system functionality for the mairetnesystem. Windows 95 allows full use
of the 4 GB of addressable memory space to sugpert the largest desktop application.
The operating system provides a 2 GB memory raoigaefdplications and reserves a 2
GB range for itself.

Virtual Memory Support (Swapfile) Improvements

Windows 95 addresses problems and limitations iegas Windows 3.1 by its virtual
memory swapfile implementation. With Windows 3.%ets were faced with a myriad of
choices and configuration options for setting wgwapfile to support virtual memory.
They had to decide whether to use a temporary si@apfa permanent swapfile, how
much memory to allocate to the swapfile, and whetilveise 32-bit disk access to access
the swapfile. A temporary swapfile did not needbéocontiguous, and Windows would
dynamically allocate hard disk space when it wagtetl and free up the space when it
was terminated. A permanent swapfile provided &t performance, but it had to be
contiguous, had to be set up on a physical hatd did was statically specified by the
user and not freed up when the user exited Windows.

The swapfile implementation in Windows 95 simpkfighe configuration task for the user
and, because of improved virtual memory algoritlamd access methods, combines the
best of a temporary swapfile and a permanent sigafiine swapfile in Windows 95 is

24 Microsoft Windows 95 Reviewer’s Guide

dynamic and can shrink or grow based on the opermperformed on the system. The
swapfile can occupy a fragmented region of the kigskl and it can be located on a
compressed disk volume.

Windows 95 uses intelligent system defaults forabefiguration of virtual memory,
relieving the user of the task of changing virton@mory settings. Figure 35 shows the
simplified virtual memory configuration settings.

Virtual Memory

These settings can adversely affect spstem performance and should
be adjusted by advanced uzers and system administrators only.

— Wirtual memory

& et wWindows manage my virtual memory settings [recommended

" Let me specify my own vitual memorny settings.

Hard disk: [C:A 127ME Free El

F iniraum: |4 _|::'
bl airmvan; IN-: TRERimLIm _Ij

[~ Digable virtual memary [not recommended).

(]9 I Cancel |

Figure 35. The simplified virtual memory settings

The Reqistry: A Centralized
Configuration Store

Windows 95 uses a mechanism calledRbegistry to serve as the central configuration
store for user, application, and computer-speaifiermation. The Registry solves
problems associated with the .INI files used in Wdws 3.1 and is a hierarchical database
that stores system-wide information in a singlatamn, making it easy to manage and
support.

Solutions to .INI Problems

Windows 3.1 uses initialization (.INI) files to séosystem-specific or application-specific
information about the state or configuration of ¢ygstem. For example, the WIN.INI file
stores state information about the appearancestoimization of the Windows
environment; the SYSTEM.INI file stores system-sfieinformation on the hardware
and device-driver configuration of the system; sadous .INI files, such as
WINFILE.INI, MSMAIL.INI, CLOCK.INI, CONTROL.INI, and PROGMAN.INI, store
application-specific information about the defaiéte of an application.

Problems with .INI files under Windows 3.1 for cijufration management include the
following:

« Information is stored in several different locagpimcluding CONFIG.SYS,
AUTOEXEC.BAT, WIN.INI, SYSTEM.INI, PROTOCOL.INI, pvate .INI files,
and private .GRP files.

Chapter 4 Base System Architecture 25

.INI files are text-based and limited in total siee64KB, and APIs allow for
get/write operations only.

¢ Information stored in .INI files is non-hierarchi@nd supports only two levels of
information: key names broken up by section heading

¢ Many .INI files contain a myriad of switches andress that are complicated to
configure or are used only by operating system aorapts.

¢ .INI files provide no mechanism for storing useesific information, thus making it
difficult for multiple users to share a single cartgg.

¢ Configuration information in .INI files is local teach system, and because no API
mechanisms are available for remotely managingigorgtion, managing multiple
systems is difficult.

To solve these problems, the Registry was desigitbdhe following goals in mind:

« Simplify the support burden.

¢ Centralize configuration information.

* Provide a means to store user, application, angatenspecific information.
¢ Provide local and remote access to configuratiéormation.

The Registry is structured as a database of keyiich each key can contain a value or
other keys (subkeys). As shown in Figure 36, thgiste/ uses a hierarchical structure to
store text or binary value information and maingeai of the configuration parameters
normally stored in the Windows system .INI filegkwas WIN.INI, SYSTEM.INI, and
PROTOCOL.INI. Although similar in some ways to tRegistration Database used in
Windows 3.1, which served as a central repositoryife associations and OLE
registration information, the Registry in Windows &xtends the Registration Database
structure to support keys that can have more thanvalue and also support data of
different types.

1 Registry Editor

Begigtiy Edit iew Help

E‘. by Computer 2l | Name | Data
{:I HEEY_CLASSES_ROOT [Default] [alue not set)
#-(HKEY_CURRENT_USER [35] CoM 1 “COMA
£+ HKEY_LOCAL MACHINE | [38] comz M2
&+ Config
-3 Erum
= hardware

¢ m] CLess

{1 devicemap
= | zerialcomm
- Metwork
H-C0 Security
- SOFTWARE
B0 System
-] HKEY_USERS
-] HEEY_CURRENT_COMFIG =] |« [

[v

Figure 36. The hierarchy of the Registry, as displged by the Registry Editor

The Registry is made up of several .DAT files tattain system-specific information
(SYSTEM.DAT) or user-specific information (USER.DATSystem-specific information,
such as the static reference to loading virtualadesirivers, is moved as appropriate from
the SYSTEM.INI file to the Registry.

26

Microsoft Windows 95 Reviewer’s Guide

System Switch Simplification

Another improvement in Windows 95 over the Wind@uk use of .INI files is related to
system switch simplification. Windows 3.1 suppagseral hundred different
configuration switches that can be specified ineys.INI files, including WIN.INI and
SYSTEM.INI. With intelligent enhancements madelte system and better dynamic
configuration properties, Windows 95 has reducedmimber of entries normally
associated with .INI files. These reductions dide&ult from simply moving .INI entries
to the Registry but by examining and justifying gresence of each and every one.

No .INI Files?

Like CONFIG.SYS and AUTOEXEC.BAT, WIN.INI and SYSMEINI and application-
specific .INI files still exist for compatibilitygasons. The Win16 APIs for manipulating
.INI files still manipulate .INI files, but develeps of Win32—-based applications are
encouraged to use the Registry APIs to consoligiapdication-specific information.

Many existing Win16—based applications expectrid ind manipulate the WIN.INI and
SYSTEM.INI files to add entries or load unique aevdrivers, so Windows 95 examines
.INI files during the boot process. For example, (BB6Enh] section of SYSTEM.INI is
checked for virtual device drivers during start up.

Role in Plug and Play

One of the primary roles of the Registry in Wind®#sis to serve as a central repository
for hardware-specific information for use by thedPand Play system components.
Windows 95 maintains information about hardware ponents and devices that have
been identified through an enumeration procesldrhterarchical structure of the
Registry. When new devices are installed, the systeecks the existing configuration in
the Registry to determine which hardware resources-extample, IRQs, I/O addresses,
DMA channels, and so on—are not being used, sdhbatew device can be properly
configured without conflicting with a device alrgeidstalled in the system.

Remote Access to Registry Information

Another advantage of the Registry for Win32—-baggulieations is that many of the
Win32 Registry APIs use the remote procedure &) mechanism in Windows 95 to
provide remote access to Registry information aceosetwork. As a result, desktop
management applications can be written to aidémthnagement and support of
Windows-based computers, and the contents of this®Reon a given PC can be queried
over a network. Industry management mechanismg, as1SNMP or DMI, can easily be
integrated into Windows 95, simplifying the managaiand support burden of an MIS
organization. For more information about managéstahd remote administration, see
Chapter 9, “Networking.”

Better Font Support

Font support in Windows 95 has been enhanced tadadetter integration with the Ul
and has been optimized for the 32-bit environment.

Chapter 4 Base System Architecture 27

The 32-Bit TrueType Rasterizer

The rasterizer component for rendering and gemgydtiue Type fonts is enhanced in
Windows 95. The rasterizer is written as a 32-bihponent, and delivers better fidelity
from the mathematical representation to the geedtaitmap, as well as better
performance for rendering TrueType fonts.

In addition to performance enhancements, the nebit32sterizer provides support for
generating complicated glyphs—for example, Han—angdltgin a faster initial boot
time in Windows 95 than in Windows 3.1 when manyt$oare installed.

29

