
 1

C H A P T E R 4

Ease on the surface requires power and speed at the core, and the modern, 32-bit
architecture of Windows 95 meets these requirements. Freed from the limitations of MS-
DOS, Windows 95 preemptively multitasks for better PC responsiveness—for example,
users no longer have to wait while the system copies files—and delivers increased
robustness and protection for applications. Windows 95 also provides the foundation for a
new generation of easier, more powerful multithreaded 32-bit applications. And most
important, Windows 95 delivers this power and robustness on today’s average PC
platform while scaling itself to take advantage of additional memory and CPU cycles.

The mission of Windows 95 is to deliver a complete, integrated operating system that
offers modern, 32-bit operating system technology and includes built-in connectivity
support. In addition to the high-level mission of Windows 95, market requirements dictate
delivery of a high performance, robust, and completely backward-compatible operating
system that provides a platform for a new generation of applications.

This chapter discusses the base system architecture used by Windows 95. The base
architecture covers low-level system services for managing memory, accessing disk
devices, and providing robust support for running applications.

Summary of Improvements over Windows 3.1

Improvements made to the base architecture of Windows 95 result in many benefits to
users. Following is a summary of some of the key improvements:

• A fully integrated 32-bit protected-mode operating system. The need for a
separate copy of MS-DOS has been eliminated.

• Preemptive multitasking and multithreading support. System responsiveness and
smooth background processing have been improved.

• 32-bit installable file systems. Systems such as VFAT, CDFS, and network
redirectors provide better performance, use of long filenames, and an open
architecture that supports future growth.

• 32-bit device drivers. Available throughout the system, these drivers deliver
improved performance and intelligent memory use.

• A complete 32-bit kernel. Included are memory management, scheduler, and
process management.

Base System Architecture

2 Microsoft Windows 95 Reviewer’s Guide

• Improved system-wide robustness and cleanup. This more stable and reliable
operating environment also cleans up after an application ends or crashes.

• More dynamic environment configuration. The need for users to tweak their
systems is reduced.

• Improved system capacity. Included are better system resource limits to address the
problems Windows 3.1 users encountered when running multiple applications.

A Fully Integrated Operating System

The first thing that users of Windows 3.1 and MS-DOS will notice when they turn on their
computers is the lack of an MS-DOS command prompt from which they would formerly
have invoked Windows. Windows 95 is a tightly integrated operating system that features
a preemptive multitasking kernel which boots directly into the graphical UI and also
provides full compatibility with the MS-DOS operating system.

Many of the components of Windows 95 overcome limitations inherent in MS-DOS and
Windows 3.1. However, these improvements do not come at the cost of compatibility with
existing software, hardware, or computing environments.

A Preemptive Multitasking Operating System
The job of the operating system is to provide services to the applications running on the
system and, in a multitasking environment, to provide support that allows more than one
application to run concurrently. In Windows 3.1, multiple applications ran concurrently in
a cooperative multitasking manner. The Windows 3.1 operating system required an
application to check the message queue every once in a while to allow the operating
system to give control to other running applications. Applications that did not check the
message queue on a frequent basis effectively hogged all the CPU time and prevented
switching to another running task.

Windows 95 uses a preemptive multitasking mechanism for running Win32–based
applications, and the operating system takes control away from or gives control to another
running task depending on the needs of the system. Unlike Win16–based applications,
Win32–based applications do not need to yield to other running tasks in order to multitask
in a friendly manner. (Win16–based applications are still cooperatively multitasked for
compatibility reasons.) Windows 95 provides a mechanism called multithreading that
allows Win32–based applications to take advantage of the preemptive multitasking nature
of the operating system and that facilitates concurrent application design. In operating-
system terms, a running Win32–based application is called a process. Each process
consists of at least a single thread. A thread is a unit of code that can get a time slice from
the operating system to run concurrently with other units of code. It must be associated
with a process, and it identifies the code path flow as the process is run by the operating
system. A Win32-based application can spawn (or initiate) multiple threads for a given
process. Multiple threads enhance the application for the user by improving throughput
and responsiveness and aiding background processing.

Because of the preemptive multitasking nature of Windows 95, threads of execution allow
background code to be processed in a smooth manner. For example, a word processing
application (process) can implement multiple threads to enhance operation and simplify
interaction with the user. The application might have one thread of code responding to the
keys pressed on the keyboard by the user to enter characters in a document, while another

 Chapter 4 Base System Architecture 3

thread is performing background operations such as spell-checking or pagination, and yet
another thread is spooling a document to the printer in the background.

Some available Windows 3.1 applications provide functionality similar to that just
described. However, because Windows 3.1 does not provide a mechanism for supporting
multithreaded applications, the application developer has to implement a threading
scheme. The use of threads in Windows 95 facilitates the adding of asynchronous
processing of information to applications by their developers.

Applications that use multithreading techniques can also take advantage of improved
processing performance available from a symmetric multiprocessing (SMP) system
running Windows NT, which allows different portions of the application code to run on
different processors simultaneously. (Windows NT uses a thread as the unit of code to
schedule symmetrically among multiple processors.)

For information about how Windows 95 runs MS-DOS–based applications in a
preemptive manner (as Windows 3.1 does today), Win16–based applications in a
cooperative manner (as Windows 3.1 does today), and Win32–based applications in
a preemptive manner (as Windows NT does today) see later sections in this chapter.

No CONFIG.SYS or AUTOEXEC.BAT?
Windows 95 doesn’t need the separate CONFIG.SYS or AUTOEXEC.BAT file required
by MS-DOS and Windows 3.1. Instead, Windows 95 is intelligent about the drivers and
settings it requires and automatically loads the appropriate driver files or makes the
appropriate configuration settings during its boot process. If a CONFIG.SYS or
AUTOEXEC.BAT file is present, the settings in these files are used to set the global
environment. For example, the default search path or the default appearance of the
command prompt can be defined by using the appropriate entries in the
AUTOEXEC.BAT file. While Windows 95 itself does not need a CONFIG.SYS
or AUTOEXEC.BAT file, compatibility is maintained with existing software or
environments that may require one or both of these files.

No MS-DOS?
Unlike Windows 3.1, Windows 95 is not dependent on real-mode operating system
components for its interaction with the file system. However, the Windows 95 boot
sequence does begin by loading real-mode operating system components that are
compatible with MS-DOS. During the boot sequence, support for loading any real-mode
drivers and TSRs that are identified in a CONFIG.SYS or AUTOEXEC.BAT file is
processed. Because these drivers explicitly look for or use MS-DOS application support,
the real-mode operating system components of Windows 95 help maintain compatibility
with software that users already have on their system. After the real-mode drivers are
loaded, Windows 95 begins loading the protect-mode operating system components. In
some cases where a protect-mode Windows–based driver is provided, Windows 95
actually removes real-mode drivers from memory. More information about this subject is
given later.

32-Bit Versus 16-Bit Components
To provide a good balance between delivering compatibility with existing applications
and drivers, decreasing the size of the operating system working set, and offering

4 Microsoft Windows 95 Reviewer’s Guide

improved system performance over Windows 3.1, Windows 95 uses a combination of 32-
bit and 16-bit code. In general, 32-bit code is provided in Windows 95 to maximize the
performance of the system, while 16-bit code balances the requirements for reducing the
size of the system and maintaining compatibility with existing applications and drivers.
System reliability is also improved without a cost in terms of compatibility or increased
size.

The design of Windows 95 deploys 32-bit code wherever it significantly improves
performance without sacrificing application compatibility. Existing 16-bit code is retained
where it is required to maintain compatibility, or where 32-bit code would increase
memory requirements without significantly improving performance. All of the I/O
subsystems and device drivers in Windows 95, such as networking and file systems, are
fully 32-bit, as are all the memory management and scheduling components (the kernel
and virtual memory manager). Figure 26 depicts the relative distribution of 32-bit code
versus 16-bit code present in Windows 95 for system-level services.

32-bit side 16-bit side

Kernel32
Thread services, synchronization
objects, memory management,

memory-mapped files, file I/O, debug
services, console, comm, etc.

Thunk bandwidth

GDI32
TrueType® rasterizer, print
subsystem, spooler, universal
graphics engine (DIBengine)

Kernel16

USER32

USER16
Existing Window™ 3.1 window
and menu management services,
plus new features (async input

model, new styles, etc).

GDI16
Existing Window™

3.1 graphics
management, plus new

Bezier, path, EMFs,
etc.

(One way)

Figure 26. The relative code distribution in Windows 95

As shown in the figure, the lowest-level services provided by the operating system kernel
are provided as 32-bit code. Most of the remaining 16-bit code consists of hand-tuned
assembly language, delivering performance that rivals some 32-bit code used by other
operating systems available on the market today. Many functions provided by
the Graphics Device Interface (GDI) have been moved to 32-bit code, including the
spooler and printing subsystem, the font rasterizer, and the drawing operations performed
by the graphics DIB engine. Much of the window management code (User) remains 16-bit
to retain application compatibility.

In addition, Windows 95 improves upon the MS-DOS and Windows 3.1 environments by
implementing many device drivers as 32-bit protected-mode code. Virtual device drivers
in Windows 95 assume the functionality provided by many real-mode MS-DOS–based
device drivers, eliminating the need to load them in MS-DOS. This technique results in a
minimal conventional-memory footprint, improved performance, and improved reliability
and stability of the system over MS-DOS–based device drivers.

 Chapter 4 Base System Architecture 5

Virtual Device Drivers
A virtual device driver is a 32-bit, protected-mode driver that manages a system resource,
such as a hardware device or installed software, so that more than one application can use
the resource at the same time. To understand the improvements available in Windows 95
over the combination of MS-DOS and Windows 3.1, it helps to have a basic
understanding of what virtual device drivers (VxDs) are and the role they play in the
Windows 95 environment.

The term VxD refers to a general virtual device driver, with x representing the type of
device driver. For example, VDD is a virtual device driver for a display device, a VTD is
a virtual device driver for a timer device, a VPD is a virtual device driver for a printer
device, and so on. Windows uses virtual devices to support multitasking for MS-DOS–
based applications, virtualizing the different hardware components on the system to make
it appear to each MS-DOS virtual machine (VM) that it is executing on its own computer.
Virtual devices work in conjunction with Windows to process interrupts and carry out I/O
operations for a given application without disrupting how other applications run.

Virtual device drivers support all hardware devices for a typical computer, including the
programmable interrupt controller (PIC), timer, direct-memory-access (DMA) device,
disk controller, serial ports, parallel ports, keyboard device, math coprocessor, and
display adapter. A virtual device driver can contain the device-specific code needed to
carry out operations on the device. A virtual device driver is required for any hardware
device that has settable operating modes or retains data over any period of time. In other
words, if the state of the hardware device can be disrupted by switching between multiple
applications, the device must have a corresponding virtual device. The virtual device
keeps track of the state of the device for each application and ensures that the device is in
the correct state whenever an application continues.

Although most virtual devices manage hardware, some manage only installed software,
such as an MS-DOS device driver or a terminate-and-stay-resident (TSR) program. Such
virtual devices often contain code that either emulates the software or ensures that the
software uses only data applicable to the currently running application. ROM BIOS, MS-
DOS, MS-DOS device drivers, and TSRs provide device-specific routines and operating
system functions that applications use to indirectly access the hardware devices. Virtual
device drivers are sometimes used to improve the performance of installed software—for
example, the 80386 and compatible microprocessors can run the 32-bit protected-mode
code of a virtual device more efficiently than the 16-bit real-mode code of an MS-DOS
device driver or TSR. In addition, performance is enhanced by eliminating ring transitions
that result in executing 32-bit applications that access 16-bit real-mode services, because
with virtual device drivers, the system can stay in protected-mode.

Windows 95 benefits from providing more device driver support implemented as a series
of VxDs in the Windows environment, instead of using the device drivers previously
available as real-mode MS-DOS device drivers. Functionality that was previously
supported as MS-DOS device drivers but is now supported as VxDs in Windows 95
includes the following components:

• MS-DOS FAT file system
• SmartDrive
• CD-ROM file system
• Network card drivers and network transport protocols
• Network client redirector and network peer server
• Mouse driver

6 Microsoft Windows 95 Reviewer’s Guide

• MS-DOS SHARE.EXE TSR
• Disk device drivers including support for SCSI devices
• DriveSpace (and DoubleSpace) disk compression

In summary, in Windows 95 VxDs provide the following advantages:

• Improved performance as a result of a 32-bit code path and the elimination or
reduction of the need to switch between real and protected mode

• Reduced conventional memory footprint by providing device driver and TSR
functionality as protected-mode components that reside in extended memory

• Improved system stability and reliability compared to MS-DOS device driver
counterparts

Virtual device drivers in Windows 95 can be identified by .VXD extensions, and virtual
device drivers from Windows 3.1 can be identified by .386 extensions.

The System Architecture
Layout in Windows 95

Figure 27 illustrates the layout of the base system architecture for Windows 95.
Components of the system are divided between Ring 0 and Ring 3 code, offering different
levels of system protection. The Ring 3 code is protected from other running processes by
protection services provided by the Intel processor architecture. The Ring 0 code consists
of low-level operating system services such as the file system and the virtual machine
manager.

Ring 0
Protect-mode file system Virtual Machine Manager
VFAT, CDFS, SCSI, Network Pager, Scheduler, DPMI server

Ring 3 (System VM)

Ring 3
(MS-DOS

VM)

Ring 3
(MS-DOS

VM)

Win32®

app
System services:

Kernel
graphics

window mgmt

Win32®

app

Win32®

app

Win16
app

Win16
app

Figure 27. The integrated architecture of Windows 95, which supports running MS-
DOS–based, Win16–based, and Win32–based applications

Figure 27 also depicts the way that MS-DOS–based, Win16–based, and Win32–based
applications run in the system. The following section discusses the provisions that the
system makes for running these applications.

 Chapter 4 Base System Architecture 7

Support for Win16–Based Applications

Win16–based (16-bit) applications run together within a unified address space and run in
a cooperatively multitasking manner, as they do under Windows 3.1. Win16–based
applications benefit from the preemptive multitasking of other system components,
including the 32-bit print and communications subsystem and the improvements made in
system robustness and protection from the system kernel in Windows 95.

Based on customer needs, resource needs, and market needs, three goals drove the
architectural design of Win16–based application support: compatibility, size, and
performance. Functionality adjustments, such as preemptively running Win16–based
applications together in the Win16 subsystem or running Win16–based applications
in separate VMs, were considered, but each of the options considered failed to meet the
three design goals. The following discussion provides some insight into the architecture of
Windows 95 as far as running Win16–based applications in a fast, stable, and reliable way
is concerned.

Compatibility
First and foremost, Windows 95 needs to run existing Win16–based applications without
modification. This factor is extremely important to existing users who want to take
advantage of the new functionality offered in Windows 95, such as 32-bit networking, but
don’t want to have to wait until new Windows 95–enabled applications are available on
the market.

Windows 95 builds upon the Windows 3.1 platform to provide support for running
existing Win16–based applications and using existing Windows–based device drivers,
while providing support for the next generation of 32-bit applications and components.
Windows 95 extends the Windows 3.1 architecture in areas that have little or no impact
on compatibility, as well as enhances the architecture to deliver a faster, more powerful
32-bit operating system.

Size
While many newer computer purchases are Intel 80486–based computers with 4 MB or 8
MB (or more) of memory, a high percentage of 80386DX–based computers with 4 MB of
memory running Windows 3.1 are still in use. To support the needs of the market,
Windows 95 must run on a base platform of an Intel 80386DX–based computer with 4
MB of RAM and provide access to its new features and functionality without requiring an
upgrade of existing hardware or the addition of more RAM.

To meet its goals, Windows 95 is designed to occupy a working set of components no
larger than Windows 3.1, thereby ensuring that any Win16–based application running at a
perceived speed on a 4 MB or 8 MB (or greater) computer runs at the same (or higher)
speed under Windows 95 without suffering any performance degradation. To meet the
size goals of Windows 95, Win16–based applications run within a unified address space,
resulting in little overhead beyond that required by Windows 3.1 to support the running of
Windows–based applications. Running in a unified address space allows Windows 95 not
only to fit on a 4 MB computer, but also to perform well. The architecture of Windows 95
includes innovative design features, such as dynamically loadable VxDs, to decrease the
working set of components and memory requirements used by the operating system.

8 Microsoft Windows 95 Reviewer’s Guide

Meeting the size design goal (as well as meeting the compatibility goal) precluded the
strategies of running Win16–based applications in a separate VM (by running a separate
copy of Windows 3.1 on top of the operating system, which would involve paying a
several megabyte “memory tax” for each application) as OS/2 does, or of emulating
Windows 3.1 on top of the Win32 subsystem (which would also involve paying a
“memory tax” for running Win16–based applications) as Windows NT does.

Running Win16–based applications in separate VMs is very expensive memory-wise.
This strategy would require separate GDI, USER, and KERNEL code in each VM that is
created, increasing the working set by as much as 2 MB for each Win16–based
application that is running (as is the case with OS/2 for Windows). On a computer with 16
MB or more, this increase may not appear significant. However, bearing in mind the
existing installed base of computers, running Win16–based applications in their own
separate VMs in 4 MB of memory is impossible, and running them in 8 MB with the level
of performance observed and expected under Windows 3.1 is very difficult.

Performance
Users expect their existing Win16–based applications to run as fast as or faster than
they do under Windows 3.1. Both Win16–based applications and MS-DOS–based
applications benefit from the 32-bit architecture of Windows 95, including the increased
use of 32-bit device driver components and 32-bit subsystems.

Win16–based applications run within a unified address space and interact with the system
much as they do under Windows 3.1. Running Win16–based applications in separate
VMs requires either mapping Win16 system components in each address space, as
Windows NT does, or providing a separate copy of each system component in each
address space, as OS/2 for Windows does. The additional memory overhead required for
Win16 system components in each VM to run a Win16–based application has a negative
impact on system performance.

Windows 95 balances the issue of system protection and robustness with the desire for
better system performance and improves on the system robustness of Windows 3.1. The
improvements in this area are briefly discussed in the next section and are described in
greater detail in Chapter 5, “Robustness.”

Protection
The support for running Win16–based applications provides protection of the system
from other running MS-DOS–based applications or Win32–based applications. Unlike
Windows 3.1, an errant Win16–based application cannot easily bring down the system or
other running processes on the system. While Win32–based applications benefit the most
from system memory protection, the robustness improvements in Windows 95 result in a
more stable and reliable operating environment than Windows 3.1.

Win16–based applications run within a unified address space and cooperatively multitask
as they do under Windows 3.1. The improvements made to overall system-wide
robustness greatly enhance the system’s ability to recover from an errant application, and
improved cleanup of the system lessens the likelihood of application errors. General
protection faults (GPFs) under Windows 3.1 are most commonly caused by an application
overwriting its own memory segments, rather than by an application overwriting memory
belonging to another application. Windows 3.1 did not recover gracefully when a
Windows–based application crashed or hung. When a GPF caused the system to halt an

 Chapter 4 Base System Architecture 9

application, the system commonly left allocated resources in memory, causing the system
to degenerate.

Because of improved protection in Windows 95, an errant Win16–based application
cannot easily bring down either the system as a whole or other running MS-DOS or
Win32–based applications. At most, it can impact other running Win16–based
applications.

Other protection improvements include the use of separate message queues for each
running Win32–based application. The use of a separate message queue for the Win16
address space and for each running Win32–based application provides better recovery of
the system and doesn’t halt the system if a Win16–based application hangs.

Robustness Improvements
System robustness when running Win16–based applications under Windows 95 is greatly
improved over Windows 3.1. Windows 95 now tracks resources allocated by Win16–
based applications and uses the information to clean up the system after an application
exits or ends abnormally, thus freeing up unused resources for use by the rest of the
system.

Robustness improvements are discussed in Chapter 5, “Robustness.”

Support for MS-DOS–Based Applications

Windows 95 includes many improvements over Windows 3.1 for running MS-DOS–
based applications. As with Windows 3.1, each MS-DOS–based application runs in its
own VM. A VM takes advantage of the Intel 80386 (and higher) architecture, which
allows multiple 8086-compatible sessions to run on the CPU and thereby allows existing
MS-DOS applications to run preemptively with the rest of the system. As with Windows
3.1, the use of virtual device drivers provides common regulated access to hardware
resources, causing each application running in a VM to think that it is running on its own
individual computer and allowing applications not designed to multitask to run
concurrently with other applications.

Windows 95 provides a flexible environment for running MS-DOS–based applications. In
Windows 3.1, users sometimes needed to exit Windows to run MS DOS–based
applications that were either ill-behaved or required direct access to system resources.
MS-DOS–based application compatibility is improved in Windows 95 to the point that
almost all MS-DOS–based applications should run under Windows 95.

A detailed discussion of the improvements made to the support for running MS-DOS–
based applications within the Windows environment is provided in Chapter 6, “Support
for Running MS-DOS–based Applications.”

Protection
In Windows, VMs are fully protected from one another, as well as from other applications
running on the system. This protection prevents errant MS-DOS–based applications from
overwriting memory occupied or used by system components or other applications. If an
MS-DOS–based application attempts to access memory outside of its address space, the
system notifies the user and terminates the MS-DOS–based application.

10 Microsoft Windows 95 Reviewer’s Guide

Robustness Improvements
System robustness is greatly improved when running MS-DOS–based applications in
Windows 95. Robustness is discussed in Chapter 5, “Robustness.”

Support for Win32–Based Applications

Win32–based applications can fully exploit and benefit significantly from the design of
the Windows 95 architecture. In addition, each Win32–based application runs in its own
fully protected, private address space. This strategy prevents Win32–based applications
from crashing each other, from crashing running MS-DOS–based applications, from
crashing running Win16–based applications, or from crashing the Windows 95 system as
a whole.

Win32–based applications feature the following benefits over Win16–based applications
in Windows 95 and over Windows 3.1:

• Preemptive multitasking
• Separate message queues
• Flat address space
• Compatibility with Windows NT
• Long filename support
• Memory protection
• Robustness improvements

Preemptive Multitasking
Unlike the cooperative multitasking used by Win16–based applications under Windows
3.1, 32-bit Win32–based applications are preemptively multitasked in Windows 95. The
operating system kernel is responsible for scheduling the time allotted for running
applications in the system, and support for preemptive multitasking results in smoother
concurrent processing and prevents any one application from utilizing all system
resources without permitting other tasks to run.

Win32–based applications can optionally implement threads to improve the granularity at
which they multitask within the system. The use of threads by an application improves the
interaction with the user and results in smoother multitasking operation.

Separate Message Queues
Under Windows 3.1, the system uses the point when an application checks the system
message queue as the mechanism to pass control to another task, allowing that task to run
in a cooperative manner. If an application doesn’t check the message queue on a regular
basis, or if the application hangs and thus prevents other applications from checking the
message queue, the system keeps the other tasks in the system suspended until the errant
application ends.

Each Win32–based application has its own message queue and is thus not affected by the
behavior of other running tasks on their own message queues. If a Win16–based
application hangs, or if another running Win32–based application crashes, a Win32–
based application continues to run preemptively and can still receive incoming messages
or event notifications.

 Chapter 4 Base System Architecture 11

Message queues are discussed in more detail in Chapter 5, “Robustness.”

Flat Address Space
Win32–based applications benefit from improved performance and simpler construct
because they can access memory in a linear fashion, rather than being limited to the
segmented memory architecture used by MS-DOS and Windows 3.1. To provide a means
of accessing high amounts of memory using a 16-bit addressing model, the Intel CPU
architecture provides support for accessing 64K chunks of memory, called segments, at a
time. Applications and the operating system suffer a performance penalty under this
architecture because of the manipulations required by the processor for mapping memory
references from the segment/offset combination to the physical memory structure.

The use of a flat address space by the 32-bit components in Windows 95 and by Win32–
based applications allows application and device driver developers to write software
without the limitations or design issues inherent in the segmented memory architecture
used by MS-DOS and Windows 3.1.

Compatibility with Windows NT
Win32–based applications that exploit Win32 APIs common to Windows 95 and
Windows NT can run without modification on either platform on Intel–based computers.
The commonality of the Win32 API provides a consistent programmatic interface and
allows application developers to leverage a single development effort to deliver software
that runs on multiple platforms. It also provides scaleability of applications and broadens
the base of platforms available for running ISV or custom applications with minimal
additional effort.

Application developers are encouraged to develop applications either under Windows 95
or under Windows NT and to test compatibility on both platforms.

Long Filename Support
Win32–based applications that call the file I/O functions supported by the Win32 API
benefit from the ability to support and manipulate filenames of up to 255 characters with
no additional development effort. To ease the burden of the application developer, the
Win32 APIs and common dialog support handle the work of manipulating long filenames,
and the file system provides compatibility with MS-DOS and other systems by
automatically maintaining the traditional 8.3 filename.

Memory Protection
Each Win32–based application runs in its own private address and is protected by the
system from other applications or processes that are running in the system. Unlike errant
Win16–based applications under Windows 3.1, errant Win32–based applications under
Windows 95 end only themselves, instead of bringing down the entire system if they
attempt to access memory belonging to another application.

The use of separate message queues for Win32–based applications also ensures that the
system continues to run if an application hangs or stops responding to messages or events.

12 Microsoft Windows 95 Reviewer’s Guide

Robustness Improvements
Win32–based applications benefit from the highest level of system robustness supported
under Windows 95. Resources allocated for each Win32–based application are tracked on
a per-thread basis and are automatically freed when the application ends. If an application
hangs, users can perform a local reboot operation to end the hung application without
affecting other running tasks, and the system then cleans up properly.

Detailed information about robustness enhancements is given in Chapter 5, “Robustness.”

32-Bit File System Architecture
The file system in Windows 95 has been redesigned to support the characteristics and
needs of the multitasking nature of its kernel. The changes present in Windows 95 provide
many benefits to users and have the following results:

• Improved ease of use. Ease of use is improved by the support of long filenames
because users no longer need to reference files by the MS-DOS 8.3 filename
structure. Instead they can use up to 255 characters to identify their documents. Ease
of use is also improved by hiding the filename extensions.

• Improved performance. As in Windows for Workgroups 3.11, file I/O performance
is improved dramatically over Windows 3.1 by featuring 32-bit protected-mode code
for reading information from and writing information to the file system, reading from
and writing to the disk device, and intelligent 32-bit caching mechanisms (a full 32-
bit code path is available from the file system to the disk device).

• Improved system stability and reliability. File system components implemented as
32-bit protected-mode device drivers offer improved system stability and reliability
over their MS-DOS device driver counterparts because they can remain in protected
mode for code execution and because they leverage existing driver technology first
implemented in Windows NT and also available in Windows for Workgroups 3.11.

Architecture Overview
Windows 95 features a layered file system architecture that supports multiple file systems
and provides a protected-mode path from the application to the media device, resulting in
improved file and disk I/O performance over Windows 3.1. The following features are
included in the new file system architecture:

• Win32 API support
• Long filename support
• 32-bit FAT file system
• 32-bit CD-ROM file system
• Dynamic system cache for file and network I/O
• Open architecture for future system support
• Disk device driver compatibility with Windows NT

Figure 28 depicts the file system architecture used by Windows 95.

 Chapter 4 Base System Architecture 13

Installable File System (IFS) Manager

32-bit FAT
(VFAT)

32-bit CD File
System (VCDFS)

Network
Redirector

Third-party file
system

component

Block IO Subsystem

Input/Output Supervisor (IOS)

Other Layers

Port Driver

SCSI Stub

Miniport

Figure 28. The file system architecture

The file system architecture in Windows 95 is made up of the following components:

• Installable File System (IFS) Manager. The IFS Manager is responsible for
arbitrating access to different file system components.

• File system drivers. The file system drivers layer includes access to file allocation
table (FAT)–based disk devices, CD-ROM file systems, and redirected network
device support.

• Block I/O subsystem. The block I/O subsystem is responsible for interacting with
the physical disk device.

Components of each of these layers are examined in the next three sections.

The Installable File System Manager
Under MS-DOS and Windows 3.1, the MS-DOS Int 21h interrupt is responsible for
providing access to the file system to manipulate file information on a disk device. To
support redirected disk devices, such as a network drive or a CD-ROM drive, other
system components, such as the network redirector, would hook the Int 21h function so
that it could examine a file system request to determine whether it should handle the
request or the base file system should. Although this mechanism provided the ability to
add additional device drivers, some add-on components were ill-behaved and interfered
with other installed drivers.

Another problem with the MS-DOS–based file system was the difficulty in supporting the
loading of multiple network redirectors to provide concurrent access to different network
types. Windows for Workgroups provided support for running the Microsoft network
redirector at the same time as an additional network redirector, such as Novell NetWare,
Banyan VINES, or SUN PC-NFS. However, support for running more than two network
redirectors at the same time was not provided.

The key to friendly access to disk and redirected devices in Windows 95 is the Installable
File System (IFS) Manager. The IFS Manager is responsible for arbitrating access to file
system devices, as well as other file system device components.

14 Microsoft Windows 95 Reviewer’s Guide

File System Drivers
Windows 95 includes support for the following file systems:

• 32-bit file allocation table (VFAT) driver

• 32-bit CD-ROM file system (CDFS) driver

• 32-bit network redirector for connectivity to Microsoft network servers, such as
Windows NT Server, along with a 32-bit network redirector to connect to Novell
NetWare servers

In addition, third parties will use the IFS Manager APIs to provide a clean way of
concurrently supporting multiple device types and adding additional disk device support
and network redirector support.

The 32-Bit Protected-Mode FAT File System
The 32-bit VFAT driver provides a 32-bit protected-mode code path for manipulating the
file system stored on a disk. It is also re-entrant and multithreaded, providing smoother
multitasking performance. The 32-bit file access driver is improved over that provided
originally with Windows for Workgroups 3.11 and is compatible with more MS-DOS-
device drivers and hard disk controllers.

Benefits of the 32-bit file access driver over MS-DOS–based driver solutions include the
following:

• Dramatically improved performance and real-mode disk caching
• No conventional memory used (replacement for real-mode SmartDrive)
• Better multitasking when accessing information on disk with no blocking
• Dynamic cache support

Under MS-DOS and Windows 3.1, manipulation of the FAT and writing to or reading
from the disk is handled by the Int 21h MS-DOS function and is 16-bit real-mode code.
Being able to manipulate the disk file system from protected mode removes or reduces the
need to transition to real mode in order to write information to the disk through MS-DOS,
which results in a performance gain for file I/O access.

The 32-bit VFAT driver interacts with the block I/O subsystem to provide 32-bit disk
access to more device types than are supported by Windows 3.1. Support is also provided
for mapping to existing real-mode disk drivers that may be in use on a user’s system. The
combination of the 32-bit file access and 32-bit disk access drivers results in significantly
improved disk and file I/O performance.

The 32-Bit Cache

The 32-bit VFAT works in conjunction with a 32-bit protected-mode cache (VCACHE)
driver and replaces and improves on the 16-bit real-mode SmartDrive disk cache software
provided with MS-DOS and Windows 3.1. The VCACHE driver features a more
intelligent algorithm for caching information read from or written to a disk drive than
SmartDrive, and results in improved performance when reading information from cache.
The VCACHE driver is also responsible for managing the cache pool for the CD-ROM
File System (CDFS) and the provided 32-bit network redirectors.

Another big improvement VCACHE provides over SmartDrive is that the memory pool
used for the cache is dynamic and is based on the amount of available free system

 Chapter 4 Base System Architecture 15

memory. Users no longer need to statically allocate a block of memory to set aside as a
disk cache because the system automatically allocates or deallocates memory used for the
cache based on system use. Because of intelligent cache use, the performance of the
system also scales better than with Windows 3.1 or Windows for Workgroups 3.11.

The 32-Bit Protected-Mode CD-ROM File System
The 32-bit protected-mode CD-ROM file system (CDFS) implemented in Windows 95
provides improved CD-ROM access performance over the real-mode MSCDEX driver in
Windows 3.1 and is a full 32-bit ISO 9660 CD file system. The CDFS driver replaces the
16-bit real-mode MSCDEX driver and features 32-bit protected-mode caching of CD-
ROM data. The CDFS driver cache is dynamic and shares the cache memory pool with
the 32-bit VFAT driver, requiring no configuration or static allocation on the part of the
user.

Benefits of the new 32-bit CDFS driver include the following:

• No conventional memory used (replaces real-mode MSCDEX)

• Improved performance over MS-DOS–based MSCDEX and real-mode cache

• Better multitasking when accessing CD-ROM information, with no blocking

• Dynamic cache support to provide a better balance between providing memory to run
applications versus memory to serve as a disk cache

If MSCDEX is specified in the AUTOEXEC.BAT, the 32-bit CDFS driver takes over the
role played by the MSCDEX driver and communicates with the CD-ROM device. The use
of MSCDEX is no longer necessary under Windows 95.

Users of CD-ROM multimedia applications benefit greatly from the new 32-bit CDFS.
Their multimedia applications run smoother and information is read from the CD-ROM
quicker, providing improved performance.

The Block I/O Subsystem
The block I/O subsystem in Windows 95 improves upon the 32-bit disk access fast-disk
device architecture in Windows 3.1 and therefore improves performance for the entire file
system and a broader array of device support.

As shown in Figure 29, the components of the block I/O subsystem include the high-level
I/O Supervisor (IOS) layer, which provides an interface to the block I/O subsystem for the
higher layer components; the port driver, which represents a monolithic disk device
driver; the SCSI layer, which provides a standard interface and driver layer to provide
device-independent control code for SCSI devices; and the SCSI mini-port driver, which
contains the device-dependent control code responsible for interacting with individual
SCSI controllers.

16 Microsoft Windows 95 Reviewer’s Guide

Block IO Subsystem

Input/Output Supervisor (IOS)

Other Layers

Port Driver

SCSI Layer

Miniport

Figure 29. The architecture of the block I/O subsystem

The block I/O subsystem provides the following support in Windows 95:

• A fully Plug and Play–enabled architecture

• Support for mini-port drivers that are binary compatible with Windows NT

• Support for Windows 3.1 fast disk drivers for backward compatibility

• Protected-mode drivers that take over real-mode MS-DOS device drivers when safe
to do so

• The ability to support existing MS-DOS real-mode disk device drivers for
compatibility

The following sections examine the different areas that make up the block I/O subsystem.
The explanations are provided to facilitate an understanding of the components, bearing in
mind that the configuration of the disk device driver layers is isolated from the user.

The I/O Supervisor
The I/O Supervisor (IOS) provides services to file systems and drivers. The IOS is
responsible for the queuing of file service requests and for routing the requests to the
appropriate file system driver. The IOS also provides asynchronous notification of file
system events to installed drivers.

The Port Driver
The port driver is a monolithic 32-bit protected-mode driver that communicates with a
specific disk device, such as a hard disk controller. This driver is specifically for use with
Windows 95 and resembles the 32-bit disk access (fast disk) driver used in Windows 3.1,
such as the WDCTRL driver used for Western Digital compatible hard disk controllers. In
Windows 95, the driver that communicates with IDE/ESDI hard disk controllers and
floppy disk controllers is implemented as a port driver. A port driver provides the same
functionality as the combination of the SCSI manager and the mini-port driver.

The SCSI Layer
The SCSI layer applies a 32-bit protected-mode universal driver model architecture
to communication with SCSI devices. The SCSI layer provides all the high-level
functionality that is common to SCSI-like devices and then uses a mini-port driver to
handle device-specific I/O calls. The SCSI Manager is part of this system and provides
compatibility support for using Windows NT mini-port drivers.

 Chapter 4 Base System Architecture 17

The Mini-Port Driver
The mini-port driver model used in Windows 95 simplifies the task of writing device
drivers for disk device hardware vendors. Because the SCSI Stub provides the high-level
functionality for communicating with SCSI devices, disk device hardware vendors need to
create only a mini-port driver that is tailored to their own disk device. The mini-port
driver for Windows 95 is 32-bit protected-mode code and is binary compatible with
Windows NT mini-port drivers, another factor that simplifies the task of writing device
drivers. Binary compatibility with NT also results in a more stable and reliable device
driver because hardware vendors need to maintain only one code base for device support.
Users of Windows 95 also benefit because many mini-port drivers are already available
for Windows NT.

Support for IDE, ESDI, and SCSI Controllers
Through the use of either a port driver or a mini-port driver, support for a broad array of
disk devices will be available for Windows 95, including popular IDE, ESDI, and SCSI
disk controllers. Users won’t have to decide whether to use a port driver or a mini-port
driver because the driver is provided by the hardware vendor and configuration of the
driver is handled by the Windows 95 system.

The Real-Mode Mapper
To provide binary compatibility with real-mode MS-DOS–based disk device drivers for
which a protected-mode counterpart does not exist in Windows 95, the block I/O
subsystem provides a mapping layer to allow the protected-mode file system to
communicate with a real-mode driver as if it were a protected-mode component. The
layers above and including this real-mode mapper (RMM) are protected-mode code, and
the real-mode mapper translates file I/O requests from protected mode to real mode so
that the MS-DOS device driver can perform the desired read or write operation from or to
the disk device. An example of when the real-mode mapper would come into play is when
real-mode disk-compression software is running and a protected-mode disk-compression
driver is not available.

Long Filename Support
The use of long filenames of up to 255 characters in Windows 95 overcomes the
sometimes cryptic 8.3 MS-DOS filename convention and allows more user-friendly
filenames. MS-DOS 8.3 filenames are maintained and tracked by the system to provide
compatibility with existing Win16–based and MS-DOS–based applications that
manipulate only 8.3 filenames, but as users migrate to Win32–based applications, the use
of 8.3 filename conventions is hidden from the user.

Long filenames are supported by extending the MS-DOS FAT file system and using bits
and fields that were previously reserved by the operating system to add special directory
entries that maintain long filename information. Extending the MS-DOS FAT layout,
rather than creating a new format, allows users to install and use Windows 95 on existing
disk formats without having to change their disk structure or reformat their drives. This
implementation provides ease of use and allows future growth while maintaining
backward compatibility with existing applications.

18 Microsoft Windows 95 Reviewer’s Guide

Because Windows 95 simply extends the FAT structure, long filenames are supported on
disks as well as hard disks. If a file on a disk that has a long filename is viewed on a
computer that is not running Windows 95, only the 8.3 filename representation is seen.

Figure 30 shows a disk directory with long filenames (shown graphically in Figure 14)
and their corresponding 8.3 filename mappings on a computer running Windows 95.

 Volume in drive C is MY HARDDISK
 Volume Serial Number is 1E30-830F
 Directory of C:\Long Filename Directory

. <DIR> 07-11-94 10:02a .
.. <DIR> 07-11-94 10:02a ..
4THQUART XLS 147 05-11-94 12:25a 4th Qua rter Analysis.xls
BOSS'SBI TXT 147 05-11-94 12:25a Boss's birthday card.txt
1994FINA DOC 147 05-11-94 10:35a 1994 Fi nancial Projections.doc
FISCALYE <DIR> 07-11-94 10:02a Fiscal Year Information
COMPANYL BMP 478 03-27-94 12:00a Company Logo.bmp
SHORTC~2 PIF 967 02-16-95 4:55p Shortcu t to MS-DOS Application.pif
NEWWAVES WAV 0 06-14-94 1:14p New Wav e Sound.wav
NEWVID~1 AVI 0 06-14-94 1:15p New vid eo.avi
DIRECTIO DOC 147 05-11-94 12:25a Directi ons to company picnic.doc
 8 file(s) 2,033 bytes
 3 dir(s) 134,643,712 bytes free

Figure 30. A directory listed from the command prompt, showing both 8.3 and long
filenames

Support for Existing Disk Management Utilities
For existing disk management utilities to recognize and preserve long filenames, utility
vendors need to revise their software products. Microsoft is working closely with utilities
vendors and is documenting long filename support and its implementation as an extension
to the FAT format as part of the Windows 95 Software Development Kit (SDK).

Existing MS-DOS–based disk management utilities that manipulate the FAT format,
including disk defragmenters, disk bit editors, and some tape backup software, may not
recognize long filenames as used by Windows 95 and may destroy long filename entries
in the FAT format. However, no data is lost if the long filename entry is destroyed
because the corresponding system-defined 8.3 filename is preserved.

Hidden File Extensions
Like Windows 3.1, Windows 95 uses file extensions to associate a given file type with an
application. However, to make it easier to manipulate files, file extensions are hidden
from users in the Windows 95 shell and in the Windows Explorer, and instead, icons are
used in the UI in Windows 95 to differentiate the documents associated with different
applications. Information about file type associations is stored in the Registry, and the
associations are used to map a given file with the icon that represents the document type.
(For compatibility reasons, Windows 95 must track filename extensions for use with
existing MS-DOS and Win16–based applications.)

In addition to hiding filename extensions in the Windows 95 shell and the Windows
Explorer, application developers can hide filenames from users in their applications.
Mechanisms for hiding filenames are documented in the Windows 95 SDK. A good
Windows 95 application makes use of these mechanisms for handling files to be
consistent with the rest of the Windows 95 environment.

 Chapter 4 Base System Architecture 19

Additional File Date/Time Attributes
To further enhance the file system, Windows 95 maintains additional date/time attributes
for files that MS-DOS does not track. Windows 95 tracks the date/time when a new file
was created, the date/time when a file was modified, and the date when a file was last
opened. These file attributes are displayed in the file’s property sheet, as shown in Figure
31.

Figure 31. The properties for a file, showing the new file date/time attributes

Utilities vendors can take advantage of this additional date/time information to provide
enhanced backup utilities—for example, to use a better mechanism when determining
whether a given file has changed.

Coordinated Universal Time Format
MS-DOS has traditionally used the local time of the computer as the time stamp for the
directory entry of a file, and continues to use local time for files stored on the local
system. However, Windows 95 supports the use of the coordinated universal time (UTC)
format for accessing or creating information on network file servers. This format provides
the superior, more universal tracking of time information required by networks that
operate across time zones.

Exclusive Access for Disk Management Tools
Disk management utilities, such as disk defragmenters, sector editors, and disk-
compression utilities, don’t get along well with Windows 3.1. File system programs, such
as CHKDSK and DEFRAG, require exclusive access to the file system to minimize the
disk access complexities that are present in a multitasking environment where disk I/O
occurs. For example, without exclusive access to the disk, data corruption might occur if a
user requests that a disk operation move information on the disk at the same time that
another task is accessing that information or writing other information to disk. However,
Windows 3.1 and MS-DOS do not provide a means of controlling access to the disk, so
users have been forced to exit Windows and enter MS-DOS to run disk management
utilities.

20 Microsoft Windows 95 Reviewer’s Guide

The file system in Windows 95 has been enhanced to support the use of Windows–based
disk management utilities by permitting exclusive access to a disk device. Exclusive disk
access is handled as part of the file system through a new API mechanism and can be used
by utilities vendors to write Windows–based disk management utilities. Microsoft is
encouraging third-party utilities vendors to use this API mechanism to move existing MS-
DOS–based utilities to Windows, and is also using it to deliver disk management utilities
as part of Windows 95.

For example, this mechanism is used by the Disk Defragmenter (Optimizer) utility
delivered as part of Windows 95. Unlike the disk defragment utility used under the
combination of MS-DOS and Windows 3.1, the Disk Defragmenter in Windows 95 can
be run from the Windows 95 shell and can even be run in the background while users
continue to work on their systems.

DriveSpace Disk Compression

Windows 95 provides built-in support for DriveSpace disk compression. Compatible with
DoubleSpace and DriveSpace disk compression provided with MS-DOS, Windows 95
provides base compression in the form of a 32-bit virtual device driver that delivers
improved performance over previously available real-mode compression drivers and frees
conventional memory for use by MS-DOS–based applications. Users of MS-DOS–based
DoubleSpace and DriveSpace don’t need to change their existing compressed volume file
(CVF) and thus don’t need to take any special actions when they install Windows 95.

As shown in Figure 32, the DriveSpace disk compression tool provided with Windows 95
is GUI-based and provides the ability to compress a physical hard drive or removable
floppy drive. The Compress a Drive dialog box, shown in Figure 33, graphically depicts
the amount of free space available before compression and the estimated space available
after compression.

Figure 32. The DriveSpace disk compression tool

 Chapter 4 Base System Architecture 21

Figure 33. The Compress a Drive dialog box, which graphically displays free space

System Capacity Improvements

Windows 95 provides better system capacity for running MS-DOS and Win16–based
applications than Windows 3.1. A number of internal enhancements to the base system
prevent internal system resources from being exhausted as quickly as was possible when
running multiple Windows–based applications under Windows 3.1.

Many of the artificial limitations present in Windows 3.1 were due to its architecture or
internal data structures, which were in turn largely due to the fact that Windows 3.1 had to
run on an Intel 80286–based computer. These limitations have for the most part been
overcome in Windows 95, to the benefit of users as well as ISVs and other developers.

System Resource Limitation Improvements
Many users have encountered Out of Memory error messages when running multiple
Windows–based applications under Windows 3.1, even though the system still reports
several megabytes of available free memory. Typically these messages were displayed
because the system could not allocate an internal memory resource in a Windows API
function call due to lack of available space in a region of memory called a heap.

Windows 3.1 maintains heaps for system components called GDI and USER. Each heap is
64 KB in size and is used for storing GDI or memory object information allocated when
an application calls a Windows API function. The amount of space available in the
combination of these two heaps is identified as the percentage of system resources that are
free and is displayed in the About dialog box in Program Manager and other Windows
applications, as shown in Figure 34.

22 Microsoft Windows 95 Reviewer’s Guide

Figure 34. The About dialog box in Program Manager in Windows 3.1, showing free
system resources

The percentage of free system resources displayed in the About dialog box is calculated
using an internal algorithm to represent the aggregate percentage of free memory in the
GDI and USER heaps. When the free system resources percentage gets too low, users
commonly see an Out of Memory error message, even though the amount of free memory
shown in the About dialog box is still quite high. This error can result from low memory
in either the GDI or USER heap (or both).

To help reduce the system resource limitation, a number of the data structures stored in
the 16-bit GDI and USER heaps in Windows 3.1 have been moved out of these heaps and
stored in 32-bit heaps, providing more room for the remaining data elements to be
created. As a result, system resources decrease less rapidly in Windows 95 than they did
in Windows 3.1.

For compatibility, not all objects were removed from the 16-bit GDI or USER heap and
placed in a 32-bit heap. For example, some Windows–based applications manipulate the
contents of the GDI heap directly, bypassing the published API mechanisms for doing so,
because their developers think direct manipulation increases performance. However,
because these applications bypass the Windows API mechanisms, moving their data from
the existing heap structures and placing them in 32-bit heaps would cause these
applications to fail because of memory access violations.

Win16–based and Win32–based applications use the same GDI and USER heaps. The
impact of removing selected items from the heaps was closely examined and objects were
selected based on the biggest improvement that could be achieved while affecting the
fewest number of applications. For example, the GDI heap can quickly become full
because of the creation of memory-intensive region objects that are used by applications
for creating complex images and by the printing subsystem for generating complex output.
Region objects were removed from the 64 KB 16-bit GDI heap and placed in a 32-bit
heap, benefiting graphic-intensive applications and providing for the creation of more
smaller objects by the system. Windows 95 improves the system capacity for the USER
heap by moving menu and window handles to the 32-bit USER heap. Instead of the total
limit of 200 for these data structures in Windows 3.1, Windows 95 allows 32,767 menu
handles and an additional 32,767 window handles per process rather than system-wide.

In addition to moving information from the GDI and USER heaps, robustness
improvements in Windows 95 that facilitate system cleanup of unfreed resources also
relieve system resource limitations. When Windows 95 determines that the owner and

 Chapter 4 Base System Architecture 23

other ended processes no longer need the resources in memory, Windows 95 cleans
up and deallocates leftover data structures. The robustness improvements in Windows 95
are discussed in Chapter 5, “Robustness.”

Better Memory Management

Windows 95 improves addressibility to provide better access to physical memory, as well
as improves upon the swapfile implementation provided in Windows 3.1 to support
virtual memory supplementation of physical memory.

Linear Memory Addressing for
Win32–Based Applications

To support a 16-bit operating environment, the Intel processor architecture uses a
mechanism, called segments, to reference memory by using a 16-bit segment address and
a 16-bit offset address within the segment. A segment is 64 KB in size, and applications
and the operating system pay a performance penalty when they access information across
segments. For 32-bit operating system functionality and Win32–based applications,
Windows 95 addresses this issue by using the 32-bit capabilities of the Intel 80386 (and
above) processor architecture to support a flat, linear memory mode. A linear addressing
model simplifies the development process for application developers, removes the
performance penalties imposed by the segmented memory architecture, and provides
access to a virtual address space that permits the addressing of up to 4 GB (4 gigabytes, or
4 billion bytes) of memory. Windows 95 uses the flat memory model internally for 32-bit
components and virtual device drivers.

Compatibility with the Windows NT Memory Model
Windows 95 uses the same memory model architecture as Windows NT, providing high-
end operating system functionality for the mainstream system. Windows 95 allows full use
of the 4 GB of addressable memory space to support even the largest desktop application.
The operating system provides a 2 GB memory range for applications and reserves a 2
GB range for itself.

Virtual Memory Support (Swapfile) Improvements
Windows 95 addresses problems and limitations imposed in Windows 3.1 by its virtual
memory swapfile implementation. With Windows 3.1, users were faced with a myriad of
choices and configuration options for setting up a swapfile to support virtual memory.
They had to decide whether to use a temporary swapfile or a permanent swapfile, how
much memory to allocate to the swapfile, and whether to use 32-bit disk access to access
the swapfile. A temporary swapfile did not need to be contiguous, and Windows would
dynamically allocate hard disk space when it was started and free up the space when it
was terminated. A permanent swapfile provided the best performance, but it had to be
contiguous, had to be set up on a physical hard disk, and was statically specified by the
user and not freed up when the user exited Windows.

The swapfile implementation in Windows 95 simplifies the configuration task for the user
and, because of improved virtual memory algorithms and access methods, combines the
best of a temporary swapfile and a permanent swapfile. The swapfile in Windows 95 is

24 Microsoft Windows 95 Reviewer’s Guide

dynamic and can shrink or grow based on the operations performed on the system. The
swapfile can occupy a fragmented region of the hard disk and it can be located on a
compressed disk volume.

Windows 95 uses intelligent system defaults for the configuration of virtual memory,
relieving the user of the task of changing virtual memory settings. Figure 35 shows the
simplified virtual memory configuration settings.

Figure 35. The simplified virtual memory settings

The Registry: A Centralized
Configuration Store

Windows 95 uses a mechanism called the Registry to serve as the central configuration
store for user, application, and computer-specific information. The Registry solves
problems associated with the .INI files used in Windows 3.1 and is a hierarchical database
that stores system-wide information in a single location, making it easy to manage and
support.

Solutions to .INI Problems
Windows 3.1 uses initialization (.INI) files to store system-specific or application-specific
information about the state or configuration of the system. For example, the WIN.INI file
stores state information about the appearance or customization of the Windows
environment; the SYSTEM.INI file stores system-specific information on the hardware
and device-driver configuration of the system; and various .INI files, such as
WINFILE.INI, MSMAIL.INI, CLOCK.INI, CONTROL.INI, and PROGMAN.INI, store
application-specific information about the default state of an application.

Problems with .INI files under Windows 3.1 for configuration management include the
following:

• Information is stored in several different locations, including CONFIG.SYS,
AUTOEXEC.BAT, WIN.INI, SYSTEM.INI, PROTOCOL.INI, private .INI files,
and private .GRP files.

 Chapter 4 Base System Architecture 25

• .INI files are text-based and limited in total size to 64KB, and APIs allow for
get/write operations only.

• Information stored in .INI files is non-hierarchical and supports only two levels of
information: key names broken up by section headings.

• Many .INI files contain a myriad of switches and entries that are complicated to
configure or are used only by operating system components.

• .INI files provide no mechanism for storing user-specific information, thus making it
difficult for multiple users to share a single computer.

• Configuration information in .INI files is local to each system, and because no API
mechanisms are available for remotely managing configuration, managing multiple
systems is difficult.

To solve these problems, the Registry was designed with the following goals in mind:

• Simplify the support burden.
• Centralize configuration information.
• Provide a means to store user, application, and computer-specific information.
• Provide local and remote access to configuration information.

The Registry is structured as a database of keys in which each key can contain a value or
other keys (subkeys). As shown in Figure 36, the Registry uses a hierarchical structure to
store text or binary value information and maintains all of the configuration parameters
normally stored in the Windows system .INI files such as WIN.INI, SYSTEM.INI, and
PROTOCOL.INI. Although similar in some ways to the Registration Database used in
Windows 3.1, which served as a central repository for file associations and OLE
registration information, the Registry in Windows 95 extends the Registration Database
structure to support keys that can have more than one value and also support data of
different types.

Figure 36. The hierarchy of the Registry, as displayed by the Registry Editor

The Registry is made up of several .DAT files that contain system-specific information
(SYSTEM.DAT) or user-specific information (USER.DAT). System-specific information,
such as the static reference to loading virtual device drivers, is moved as appropriate from
the SYSTEM.INI file to the Registry.

26 Microsoft Windows 95 Reviewer’s Guide

System Switch Simplification
Another improvement in Windows 95 over the Windows 3.1 use of .INI files is related to
system switch simplification. Windows 3.1 supports several hundred different
configuration switches that can be specified in system .INI files, including WIN.INI and
SYSTEM.INI. With intelligent enhancements made to the system and better dynamic
configuration properties, Windows 95 has reduced the number of entries normally
associated with .INI files. These reductions didn’t result from simply moving .INI entries
to the Registry but by examining and justifying the presence of each and every one.

No .INI Files?
Like CONFIG.SYS and AUTOEXEC.BAT, WIN.INI and SYSTEM.INI and application-
specific .INI files still exist for compatibility reasons. The Win16 APIs for manipulating
.INI files still manipulate .INI files, but developers of Win32–based applications are
encouraged to use the Registry APIs to consolidate application-specific information.

Many existing Win16–based applications expect to find and manipulate the WIN.INI and
SYSTEM.INI files to add entries or load unique device drivers, so Windows 95 examines
.INI files during the boot process. For example, the [386Enh] section of SYSTEM.INI is
checked for virtual device drivers during start up.

Role in Plug and Play
One of the primary roles of the Registry in Windows 95 is to serve as a central repository
for hardware-specific information for use by the Plug and Play system components.
Windows 95 maintains information about hardware components and devices that have
been identified through an enumeration process in the hierarchical structure of the
Registry. When new devices are installed, the system checks the existing configuration in
the Registry to determine which hardware resources—for example, IRQs, I/O addresses,
DMA channels, and so on—are not being used, so that the new device can be properly
configured without conflicting with a device already installed in the system.

Remote Access to Registry Information
Another advantage of the Registry for Win32–based applications is that many of the
Win32 Registry APIs use the remote procedure call (RPC) mechanism in Windows 95 to
provide remote access to Registry information across a network. As a result, desktop
management applications can be written to aid in the management and support of
Windows–based computers, and the contents of the Registry on a given PC can be queried
over a network. Industry management mechanisms, such as SNMP or DMI, can easily be
integrated into Windows 95, simplifying the management and support burden of an MIS
organization. For more information about manageability and remote administration, see
Chapter 9, “Networking.”

Better Font Support

Font support in Windows 95 has been enhanced to provide better integration with the UI
and has been optimized for the 32-bit environment.

 Chapter 4 Base System Architecture 27

The 32-Bit TrueType Rasterizer
The rasterizer component for rendering and generating TrueType fonts is enhanced in
Windows 95. The rasterizer is written as a 32-bit component, and delivers better fidelity
from the mathematical representation to the generated bitmap, as well as better
performance for rendering TrueType fonts.

In addition to performance enhancements, the new 32-bit rasterizer provides support for
generating complicated glyphs—for example, Han—and results in a faster initial boot
time in Windows 95 than in Windows 3.1 when many fonts are installed.

 29

