
 1 
 

C H A P T E R  1 2  

 

Windows 95 features a new 32-bit communications subsystem that provides higher 
throughput, better reliability, and greater device independence for communications 
operations than Windows 3.1. The new communications subsystem serves as the 
underlying architecture on which Windows 95 provides communications services that 
support telecommuting and dial-up network access, Microsoft Fax services, access to 
online information services, computer-telephone integration, conferencing, and remote 
access to mail. 

The communications subsystem addresses problems that users encountered with 
communications support in Windows 3.1 and provides a powerful, robust, and flexible 
communications architecture. 

Summary of Improvements over Windows 3.1 
Changes made to the Windows 3.1 kernel and communications architecture resulted in the 
following improvements and benefits to the Windows 95 user: 

• Robust and reliable, high-baud-rate communications throughput 

• Better multitasking of communications applications 

• Simpler centralized setup and configuration 

• Broader device support 

• Better support for sharing communication devices, such as modems, among different 
communications applications 

• Telephone network independence 

The Communications Architecture 
 

Around the time when Windows 3.0 was first developed, 2400-baud modems were the 
mainstream and 9600-baud modems were just becoming affordable. Windows was able to 
handle receiving data at these relatively slow rates without much difficulty. However, as 
mechanisms to transfer communications information at faster rates—for example, higher 
baud rates or the use of data compression—became more popular, the communications 
architecture of Windows needed to be examined closely. 

Communications 



2  Microsoft Windows 95 Reviewer’s Guide 
 

When Windows 3.1 was released, 9600-baud modems were extremely popular, but 
because of communications barriers under Windows 3.1, the overall effectiveness of 
reliable high data throughput was limited, and the efficiencies of multitasking were eroded 
when running communications applications. These communications barriers included high 
interrupt latency and overhead that affected high speed communications, and a monolithic 
driver architecture that made it necessary for some third parties to replace the 
communications driver provided with Windows to allow their devices to run efficiently on 
the system. 

Windows 95 greatly improves upon the Windows 3.1 architecture to support 
communications applications, support high-speed communications, and provide a modular 
communications architecture that allows third parties and communications device 
manufacturers to easily plug in new communications device drivers. This section 
describes the communications architecture used in Windows 95. 

Communications Goals of Windows 95 
The goals of communications support in Windows 95 are to deliver better performance 
than Windows 3.1, and to enhance ease-of-use through Plug and Play communications. 
The communications architecture of Windows 95 delivers the following performance 
benefits over Windows 3.1: 

• High-speed reliability. Windows 95 supports reliable high-speed communications 
by keeping up with data coming in from the communications port, thereby incurring 
no lost characters because of interrupt latency. In addition, the use of a 32-bit 
protected mode file system and network architecture has less impact on the 
communications system because required mode transitions and interrupt latency are 
reduced. 

• Higher data throughput. The 32-bit communications subsystem leverages 
the preemptive multitasking architecture of Windows 95 to provide better 
responsiveness to communications applications and support higher data throughput. 
Communications transfers in 32-bit applications are not as affected by other tasks 
running in the system as Win16–based applications under Windows 3.1. 

• Support for time-critical protocols. The communications architecture provides 
support for time-critical protocols and allows for real-time serial device control. 

• Independence of underlying telephone networks. Windows 95 allows application 
developers to build telephony applications that can run on a wide variety of telephone 
networks, including analog, proprietary digital PBXs, key systems, ISDN, and 
cellular. 

The Plug and Play initiative provides ease-of-use enhancements throughout Windows 95, 
and communications support is no exception. Plug and Play support for communications 
delivers the following benefits: 

• Broad device support. Windows 95 features a new communications driver 
architecture that makes it easier for third parties to extend the communications 
support provided as part of the operating system without sacrificing functionality or 
stability. In addition, the new communications architecture features APIs that support 
more robust communications devices beyond base RS-232 devices—for example, 
ISDN. 



 Chapter 12    Communications  3 
 

• Easy-to-install and easy-to-use communications devices. Windows 95 features 
centralized modem installation and configuration to simplify setup for users and 
simplify communications development efforts for application developers. 
Windows 95 leverages the use of a single universal modem driver (UniModem) to 
provide a consistent mechanism for communicating with modem devices. It also 
provides detection support for Plug and Play modems and supports existing hardware 
by including mechanisms for detecting legacy modems. 

• Device sharing among communications applications. Through the use of the 
Telephony API (TAPI), Windows 95 provides consistent, device-independent 
mechanisms for controlling communications devices for operations such as dialing 
and answering incoming calls. Arbitration for the sharing of communications ports 
and devices is also handled through TAPI. For example, while dial-up networking in 
Windows 95 is waiting for an incoming call, a TAPI-aware fax communications 
application can send an outgoing fax without having to first terminate the already 
running communications application. 

To further describe the improvements resulting from the new 32-bit communications 
subsystem in Windows 95, the rest of this section examines the components that comprise 
the communications support. 

Kernel Improvements 
When data comes into the system from a serial communications port, an interrupt tells the 
system that a piece of data has been received. If information was received at a high rate 
under Windows 3.1, the system sometimes could not keep up with the incoming data, 
resulting in errors or lost information at the port. 

Whereas disk I/O and network I/O manipulate blocks of information at a time, serial 
communications I/O generates one interrupt on the system for each incoming character. 
The burden on the communications driver to keep up is quite high. To support high-speed 
throughput of information from a communications device, the system must be able to 
respond quickly to incoming data, but in Windows 3.1, real-mode drivers sometimes 
disabled system-wide interrupts for “long” periods of time (usually milliseconds), during 
which no incoming information could be received. 

To address the issue of supporting higher, sustained communications throughput, the 
Windows 95 development team focused on areas in the Windows 3.1 kernel that resulted 
in periods of time when interrupts were disabled by the system. The Windows 3.1 kernel 
and other components were limited to reliable serial communications at rates of 9600 bps 
or slightly higher (dependent on CPU speed) because of high interrupt latency or other 
systems design limitations. In addition, when Windows 3.1 had to execute real-mode 
code, the use of real-mode file system and networking drivers blocked the system, thus 
preventing the system from being able to keep up with incoming data. 

To improve performance and the rate at which the system can accept incoming data 
reliably, the code that can be used by only one process at a time (critical sections) was 
reduced and interrupt latency in the core system was also reduced. In addition, the use of 
new 32-bit protected-mode components for the implementation of the file system and 
network subsystem helped to improve the system responsiveness. Windows 95 is now 
truly limited in baud rate only by PC hardware characteristics, such as the processor speed 
and type of communications port. 



4  Microsoft Windows 95 Reviewer’s Guide 
 

Driver Architecture 
The Windows 95 communications subsystem consists of a modular, 32-bit protected-
mode architecture with new communications drivers. A new layer called VCOMM 
provides protected-mode services that allow Windows–based applications and device 
drivers to use ports and modems. To conserve system resources, communications device 
drivers are loaded into memory only when in use by applications. VCOMM uses the 
Windows 95 Plug and Play services to assist with configuration and installation of 
communications devices. 

In Windows 3.1, a monolithic communications driver called COMM.DRV provided 
an API interface, through which Windows–based applications interacted with 
communications devices, and the code that serves as the communications port driver. The 
monolithic approach made it necessary to completely replace the Windows 
communications driver if new functionality was required by a hardware device. Figure 77 
shows the relationship between the COMM.DRV driver and the hardware device in 
Windows 3.1. 

Win16 App

Win16
Communications

API

COMM.DRV

Modem

Serial Port
Hardware

 

Figure 77. The communications architecture of Windows 3.1 

Windows 95 provides a more flexible communications architecture than Windows 
3.1, separating communications operations into three primary areas: Win32 
communications APIs and TAPI, the universal modem driver, and communications port 
drivers. Figure 78 shows the relationship between the VCOMM communications driver 
and the port drivers to communicate with hardware devices. The flow path for a Win16–
based application is also illustrated to show how compatibility is maintained for existing 
Windows–based applications. Compatibility is maintained for IHVs and ISVs that replace 
the Windows 3.1 COMM.DRV driver; however the vendor-specific communications 
driver communicates directly with the I/O port, rather than going through VCOMM. 



 Chapter 12    Communications  5 
 

IHV Driver

Win32
TAPI

VCOMM

Win32 Communications
Application

Win32
COMM API

UniModem Driver

Control Data

Win16
Communications

Application

Win16
COMM API

COMM.DRV

Port Driver(s)

SERIAL other drivers

Serial/Comm
Port

IHV Adapter(s)

Modem Modem
Other Comm

Device

Hardware
Ports/Devices

Replacement Comm
Driver

 

Figure 78. The communications architecture of Windows 95 

The primary areas that make up this architecture are the following: 

• Win32 communications APIs and TAPI. The Win32 communications APIs in 
Windows 95 provide an interface for using modems and communications devices in a 
device-independent fashion. Applications call the Win32 communications APIs to 
configure modems and perform data I/O through them. Through the Telephony API, 
applications can control modems or other telephony devices for operations such as 
dialing, answering, or hanging up a connection, in a standard way. TAPI-aware 
communications applications no longer need to provide their own modem support list 
because interaction with a modem is now centralized by Windows 95. The 
communications functionality provided with Windows 95 utilizes these services. 

• Universal modem driver. Also new in Windows 95 is the universal modem driver, 
UniModem, which is a layer for providing services for data and fax modems and 
voice. Users no longer have to learn (and application developers no longer have to 
maintain) difficult modem AT commands to dial, answer, and configure modems. 
UniModem handles these tasks automatically, using mini-drivers written by modem 
hardware vendors. Application developers can use TAPI to perform modem control 
operations in a modem-independent manner. 

• Port drivers. Port drivers are responsible for communicating with I/O ports, which 
are accessed through the VCOMM driver and provide a layered approach to device 
communications. For example, Windows 95 provides a port driver to communicate 
with serial communications and parallel ports, and third parties and IHVs can provide 
port drivers to communicate with their own hardware adapters, such as multiport 
communications adapters. With the port driver model in Windows 95, third parties no 
longer have to replace the communications subsystem as they did in Windows 3.1. 



6  Microsoft Windows 95 Reviewer’s Guide 
 

The Telephony API (TAPI) 
The Windows Telephony API is part of the Microsoft Windows Open Services 
Architecture (WOSA), which provides a single set of open-ended interfaces to enterprise 
computing services. WOSA encompasses a number of APIs, providing application and 
corporate developers with an open set of interfaces to which applications can be written 
and accessed. WOSA also includes services for data access, messaging, software 
licensing, connectivity, and financial services. 

Like other WOSA services, the Windows Telephony API consists of two interfaces: the 
applications programming interface (API) that developers write to, and the service 
provider interface (SPI) that is used to establish the connection to the specific telephone 
network. This model is similar to the one whereby printer manufacturers provide printer 
drivers for Windows–based applications. Figure 79 shows the relationship between the 
“front-end” Windows Telephony API and the “back-end” Windows Telephony SPI. 

Windows Telephony DLL

Application programming interface

Service Provider interface

Phone-enabled applications

Rolodex Call control Agent desktopMailConferencing

PBX Cellular POTSPCSISDN

Telephone network services

 

Figure 79. The seamless integration of applications and telephone networks 
by means of the Windows Telephony API and the Windows Telephony SPI 

The Windows Telephony API provides a standard way for communications applications 
to control telephony functions for data, fax, and voice calls. The API manages all 
signaling between a PC and a telephone network, including such basic functions as 
establishing, answering, and terminating a call. It also includes supplementary functions, 
such as hold, transfer, conference, and call park, found in PBXs, ISDN, and other phone 
systems. In addition, the API provides access to features that are specific to certain 
service providers, with built-in extensibility to accommodate future telephony features 
and networks as they become available. 

The Telephony API supports four models for integrating Windows 95 PCs with telephone 
networks, as illustrated in Figure 80. Applications using the Telephony API can work in 
any of these four connection models, whether they involve a physical connection between 
a PC and phone on the desktop, such as the phone or PC-centric models, or a logical 
connection in either of the client-server models. 



 Chapter 12    Communications  7 
 

Serial
llll ll

LAN

Add-in board or motherboard

LAN

Switch-to-host link

Switch/PBXSwitch/PBX

Phone-centric

PC-centric Voice server

Switch-to-host link

 

Figure 80. Four models for integrating Windows 95 PCs with telephones 

Through the use of the TAPI services, applications that support communications services 
have a device-independent means for interacting with telecommunications networks. 
TAPI also provides a common access mechanism for requesting the use 
of communications ports and devices, thus providing a means for multiple 
communications applications to share a single modem—data, fax or voice—in the 
computer. 

Windows 95 includes TAPI support in the base operating system, allowing application 
developers to leverage this functionality in their Windows 95–aware applications. In 
addition, all communications components included as part of Windows 95 are TAPI 
clients. 

Sharing Communications Devices 
Through the TAPI interface, communications applications can ask for access to the 
modem or telephone device, allowing the communications subsystem in Windows 95 to 
arbitrate device contention and allow applications to share the communications device in a 
cooperative manner. 

Win32–based applications can utilize TAPI functionality to allow some applications to 
make outgoing calls while others are waiting for inbound calls. For example, while a dial-
up network service that is configured for auto-answer mode is for an incoming call, a 
Win32–based communications application can call the TAPI services to request the use of 
the modem to perform an outgoing call. Only one call can be performed at a time, but 
users no longer have to terminate other applications that are using a communications port 
in order to run a different application. The TAPI services arbitrate requests to share 
communications ports and devices. 

Try It! 

Test the Power of the Telephony API 

1. In Windows 95, install and configure a modem for use on your system. 



8  Microsoft Windows 95 Reviewer’s Guide 
 

2. Run TAPI-enabled applications, such as Phone Dialer, HyperTerminal, Dial-Up 
Networking, and Microsoft Fax software, and note that after the modem is configured 
you don’t have to change modem settings in any of these applications. 

Centralized Modem Setup and Configuration 
 

Support for installing and configuring a modem under Windows 95 is greatly simplified 
over Windows 3.1. Configuring each individual communications application for the 
correct serial port, modem type, and other related modem configuration parameters is no 
longer necessary. Windows 95 provides central configuration of communications devices 
through a tool in the Control Panel.  Win32–based applications that take advantage of the 
TAPI services implemented in Windows 95 can completely leverage the user’s 
configuration of their communications hardware, making subsequent configuration of 
communications applications easy. 

Windows 95 brings the following benefits to modem configuration: 

• Easy modem configuration of new communications applications for use by entire 
system 

• Centralized communications port status and configuration 
• Supported by TAPI and Win32 communications APIs 
• Support for 100+ modems 

Modem Configuration in Windows 3.1 
With Windows 3.1, when users added a new communications application to their 
computer, they first had to configure the application to communicate with their modem by 
specifying the COM port to use and the type of modem, in addition to other 
communication parameters. Communications and modem configuration was either 
handled by the application developer and specified as a series of default modem AT 
commands, or users had to read through the modem manual and type in the appropriate 
command strings. For example, Figure 81 shows the Modem Commands dialog box in 
Terminal. Many Windows 3.1–based communications applications support only a limited 
set of modems because, given the number of modems available on the market, the burden 
on the application developer of providing global support is too great. 

 

Figure 81. Configuring a modem in Windows 3.1 Terminal 



 Chapter 12    Communications  9 
 

Modem Configuration in Windows 95 
As with support for printers, the support for modems in Windows 95 is centralized. When 
users first install Windows 95, they are prompted to detect or identify the modem device 
that they have connected to or installed in their computer. When a modem has been 
selected and configured, any communications application that supports TAPI services can 
interact with the modem in a device-independent way. Users no longer need to know or 
understand AT command sequences to customize their communications application. 

Configuring a modem under Windows 95 is as easy as performing three simple steps: 
identifying the new modem device, configuring the modem device, and configuring the 
Telephony services. 

Identifying a New Modem Device 
If a modem is not selected when Windows 95 is first installed, The Modem Wizard can be 
used to identify a new modem, by using the Modems tool in the Control Panel. When the 
Modem Wizard dialog box is displayed, as shown in Figure 82, the user can have the 
Wizard detect the modem connected to the PC or can manually select a modem from the 
list of known manufacturers and modem models. The detect option uses Plug and Play to 
configure the correct device. If the Wizard cannot detect the device, the user can still 
manually select the correct modem. 

 

Figure 82. The Modem Wizard, which can detect and install a modem 

Configuring a Modem Device 
After the correct modem has been selected, users can optionally change configuration 
parameters, such as the volume for the modem speaker, the time to wait for the remote 
computer to answer a call, and the maximum baud rate to use, on a property sheet like the 
one shown in Figure 83. (The maximum baud rate is limited by the speed of the PC’s 
CPU and the speed supported by the communications port.) 



10  Microsoft Windows 95 Reviewer’s Guide 
 

 

Figure 83. A Modem property sheet 

Configuring Telephony Services 
In addition to configuring the modem device, users configure telephony services to 
identify the various dialing parameters associated with the different locations where the 
PC will be used. For each location, information is stored for use by TAPI-aware 
applications, including information needed to dial a local call and a long distance call, the 
location’s area code (for use in determining whether the call is inside or outside the 
calling area code), and calling card information. For a desktop PC, the default location 
would commonly be used—the default name could be changed to in the office—whereas 
for a portable computer, a mobile user might add several different locations 
to accommodate those where the computer is commonly used. For example, a mobile user 
might use the computer in the office, on the road, or in a remote city. Figure 84 shows 
three location configurations that are selectable depending on the location where the 
computer is being used. 



 Chapter 12    Communications  11 
 

 

Figure 84. Dialing Properties for configuring location calling information 

Device/Hardware Support 
Windows 95 provides improved communications device and hardware support over 
Windows 3.1. A few areas of improvement are discussed below. 

Support for 16550A UART FIFO 
Windows 95 provides greater robustness and performance at high baud rates for 
MS-DOS–based and Windows–based communications applications using local serial 
ports with 16550A-compatible UARTs. The 16550A UART contains a 16-byte FIFO 
buffer to prevent character overflow resulting from interrupt latency, and help to reduce 
overall interrupt overhead. Because the Windows 3.1 communications driver did not fully 
support the use of the 16550A UART, some third-party communications vendors had to 
replace the driver. Improvements in Windows 95 communications should alleviate this 
problem. 

Support for More Ports 
Windows 3.1 limited the number of logical names that could be used to address serial 
communications ports to nine and the number that could be used to address parallel ports 
to four. This limit inhibited the use of multiport serial devices in Windows 3.1. The 
communications APIs in Windows 95 have been enhanced to support the same number of 
logical ports as MS-DOS: 128 serial ports and 128 parallel ports. Obviously, the number 
of usable ports is still a function of the number of physical ports available to the system. 

Support for Future Parallel Port Modems 
Windows 95 supports Enhanced Capabilities Ports (ECP) to facilitate higher speed 
communications than is possible over a serial device. This support provides for the use of 
future parallel port modems. 



12  Microsoft Windows 95 Reviewer’s Guide 
 

Plug and Play Support 
 

Plug and Play support for communications devices in Windows 95 facilitates the detection 
of connected modem devices and assignment of system resources—for example, IRQs 
and I/O addresses for communications ports—which simplifies configuration and setup. 
In addition to Plug and Play detection, Windows 95 provides for manual detection of 
non–Plug and Play communications devices, such as modems. Because no standard for 
automatically obtaining device information using the AT modem command strings 
presently exists, detection of legacy modems is handled manually by querying the modem 
device and checking the information returned against a database of known modem 
information. As part of a Telecommunications Industry Association (TIA) proposed 
standard called IS-131, Microsoft is working with other leading industry manufacturers to 
standardize the modem command set. When this proposal is adopted, Windows 95 will 
support the standardized command set, which will aid detection of legacy modems. 

Modems 
External modems require new firmware to return the required Plug and Play ID 
information, whereas internal modems utilize the ISA Plug and Play specification. 
PCMCIA communications devices are supported as part of the Plug and Play services for 
the PCMCIA specification. Some modem manufacturers will improve their 
communications product offerings by revising their existing modem lines, while others 
will produce a new line of Plug and Play modems. 

Detection of Plug and Play serial devices, such as modems, is handled when Windows 95 
is initially installed, during the boot process, or when a new modem device is connected to 
the system. As with other Plug and Play devices, the user is notified that the new device 
has been detected and is asked to confirm the installation and configuration of the device. 

Support for legacy modems is provided by using device-specific information to provide a 
manual detection mechanism, or by displaying a list of supported modems from which a 
user can choose the appropriate one. After the modem has been identified for the system, 
it can be used by TAPI-enabled communications applications, including dial-up 
networking, Microsoft Fax services, and the new HyperTerminal communications 
application. 

HyperTerminal 
 

Windows 95 includes a new 32-bit communications application called HyperTerminal 
that has all the qualities of a good Windows 95 communications application. 
HyperTerminal offers the same base communication capabilities as the Terminal program 
included with Windows 3.1, but integrates well with the UI in Windows 95 and 
demonstrates how the Win32 communications APIs and TAPI services support more 
flexible communications applications than Windows 3.1–based applications. 

Good communications applications utilize the Windows 95 services and capabilities 
to offer a more robust and powerful product, as follows: 

• They are Win32–based applications that use the Win32 communications APIs. 



 Chapter 12    Communications  13 
 

• Their internal architecture uses multiple threads of execution to provide good 
responsiveness to the user and great error-free high-speed communications. Multiple 
threads allow full preemptive multitasking of communications tasks and support 
concurrent interaction with the user, downloading of remote data, and display of 
communications status. 

• They take advantage of TAPI services for making remote connections and controlling 
the modem device. 

Try It! 

Run Communications Applications in the Background 

1. Start Windows 3.1. 

2. Run an MS-DOS–based communications application in the background with other 
foreground activities. 

3. Run a Win16–based communications application and perform other CPU or disk-
intensive tasks, such as copying files, accessing a network, or formatting a floppy 
disk. 

4. Now start Windows 95 and repeat steps 2 and 3. 

5. Run the 32-bit HyperTerminal communications application and perform other CPU 
or disk-intensive tasks, such as copying files, accessing a network, or formatting a 
floppy disk. 

Phone Dialer 
The Phone Dialer application in Windows 95 provides basic support for making 
telephone calls. As shown in Figure 85, it includes a telephone dial pad, user 
programmable speed dials, and a call log. 

 

Figure 85. Phone Dialer Application 

Increasingly, new communications hardware will support voice communications in 
addition to data and fax. The next generation of modems will support the AT+V standard 



14  Microsoft Windows 95 Reviewer’s Guide 
 

(TIA IS-101), which adds voice support to the standard AT command set, effectively 
turning the modem into a telephone designed to be a PC peripheral. Other devices, such as 
those built on digital signal processors (DSPs), will also include voice telephony support. 
Windows 95 communications applications will bring control of the telephone to the PC, 
enabling programmable “smart” answering machines, dynamic call filtering and routing, 
dialing from any PC application or directory, drag-and-drop setup of conference calls, and 
other types of computer-telephone integration. 



 15 
 

 


