
1SOFTWARE PATENTS: AN ECONOMICPERSPECTIVEFirst Supplementary SubmissionBy The League for Programming FreedomTo The Patent and Trademark O�ceOn Patent Protection for Software-Related Inventions(by Gordon Irlam and Paul Rubin)Version 1.0This document is the League for Programming Freedom's response to issues raised by the San Josehearings of January 26-27, 1994. The League's submission on software patents is contained in aseparate document.Speakers at the San Jose hearings presented many conicting arguments for and against softwarepatents. To evaluate these arguments, we must organize them within a systematic framework andanswer the questions that they raise. Since the patent system is an economic system, economicsis the best framework. We therefore use an economic perspective to evaluate the arguments weheard. We �rst describe our approach to the overall question of software patents, and then moveon to further questions.What is the Main Question That Needs to be Answered?The goal of the patent system is to promote progress. Whether software should be patentable istherefore a question of whether software patents promote progress. The economic interpretation ofthis question is whether granting software bene�ts the economy by making the software industrymore e�cient. More explicitly, this question asks:Does the transfer of economic resources which software patents represent constitute atransfer whereby the resources are going to be employed more productively?Most broad economic transfers produce both winners and losers, so we need to look beyond thefact that a transfer occurs, and instead look at the larger picture. Sometimes this can be di�cult:few economists believe agricultural subsidies are a good idea, yet the agricultural industry is nearlyuniversally in favor of them. A government hearing on agricultural subsidies would be likely toreceive almost overwhelming testimony as to their bene�cial e�ect.We can't simply classify public testimony on the e�ect of software patents and measure its volumeto determine its validity. We need to carefully evaluate and investigate the issues.We need to seek advice not only from those directly a�ected, but also those best equipped to answerthe question: economists, especially economists familiar with the software industry. At stake is thefuture e�ciency of a $50 billion a year industry that prospered and progressed quickly without

2patents. There is a basic conict between patent monopolies and a free-enterprise economy basedon competition, so free-enterprise principles demand that people who want to impose bureaucraticrestrictions on a productive industry must show a clear need for them.Is it Possible to Legislatively De�ne Software?This issue was raised frequently at the San Jose hearings. We were very surprised that such anargument would be made to justify risking the future e�ciency of a $50 billion a year industry.Since this argument is apparently one of the key arguments in favor of the continued granting ofsoftware patents, we would like to subject it to intense scrutiny.It is true that many things in this world form part of a continuum. Nonetheless we are able tolegislatively di�erentiate between them. The Post O�ce is able to distinguish between a letterand a letter packet. The FDA is able to distinguish between a cheese spread and a cheese avoredspread. There is no way to draw a perfect line between \drunk" and \sober", but the law doesdraw a line, and it works.On a larger scale, the IRS classi�es capital goods into many di�erent categories to determinedepreciation rates, while the Customs Service is able to classify things to apply duties. Considerable�nancial incentives exist to try to circumvent these classi�cation systems, yet they work. There islittle problem with them being circumvented, or with their complexities imposing great �nancialburdens. The legal system e�ectively handles disputes over occasional borderline cases.A legislative de�nition of software need not embody absolute truth. It need only work e�ectivelyand e�ciently. Searching for absolute truth makes no more sense than determining the exactde�nition the IRS should use for wood pulping machinery.Here's the de�nition we propose:Software is composed of ideal infallible mathematical components whose outputs areuna�ected by the components they feed into.We are con�dent the PTO and courts could readily distinguish between software and hardwareusing this de�nition. The PTO is already skilled at administering a classi�cation system that dealswith far more subtle distinctions.Appendix A clearly shows that it is possible to classify patents based on their software characteris-tics. We examined 2,000 patents issued during a one week period and analyzed the details of everysoftware related patent. We were able to readily identify such patents using any of a number ofdi�erent techniques.

3DoNew Companies Need Software Patents to Attract StartupCapital?At the San Jose hearings Tom Cronan of Taligent forcefully suggested startup companies requiresoftware patents to attract venture capital. He described Taligent as a recent startup that hadsucceeded in attracting a large amount of venture capital, and for whom software patents wereconsidered as vital. He failed to mention Taligent is an IBM - Apple joint venture, sta�ed bytransferring surplus personnel from these two companies. Taligent is quite di�erent from mostother startups.The numerous \two kids and a garage" stories demonstrate that successful software ventures requirerelatively little capital. It isn't necessary to attract large amounts of capital to produce software.Or at least it was not necessary | defending against patent threats may increase the expense.All the software companies spawned by the microcomputer revolution gathered su�cient startingcapital without any software patents. Microsoft, Borland, Novell, Adobe, Symantec, Oracle, andWordPerfect are just a few examples.Other speakers besides Tom Cronan also claimed startups need software patents to attract capitalnowadays. It doesn't however follow that the existence of software patents helps startups. Anexplanation can be found via simple economic reasoning: if software patents exist, then havingsoftware patents cannot harm a startup; they can only help or do nothing. The outcome dependson whether your competitors also have them. The payo� matrix is:YOUR COMPETITORS HAVE S/W PATENTSYES NOYOU YES you lose somewhat you win somewhatHAVES/W NO you lose big neutralPATENTSEconomists will recognize this matrix as a textbook example of the Prisoner's Dilemma from gametheory. In either case, having software patents are to your advantage, if such patents are available.A rational investor therefore must insist on them when they are available, even though this strategyis bad for the software industry and the public as a whole. Government policy should aim to alterPrisoner's Dilemma situations so that the parties involved will prefer choices that give a high totalbene�t.Will an Improved Prior Art Database Solve the Problem?At the San Jose hearings, several companies called for the Patent O�ce to improve its prior artcollection. Many of these companies had been on the receiving end of software patent litigation.Reinvention is commonplace in the software industry, and in many cases the patent o�ce haderroneously granted software patents because it was unaware of prior art.

4If the patent o�ce was better aware of prior art, would the problem of software patents go away?No. What these companies are experiencing is merely a side e�ect of the transition from a softwareindustry where software patents are uncommon to a software industry where they are widespread.When a company �nds itself accused of infringing a software patent today, it is frequently able tolook back 5 or 10 years | to a time before software patents were widespread | and �nd prior artthat invalidates the patent. What will happen in the future? The company will look back to today| to a time when software patents are being granted in great numbers | and may again �nd thetechnique it is accused of infringing was invented earlier. This time, though, the company will notget o� the hook. It will just �nd instead that it is infringing a di�erent software patent than theone in question.Companies now being harmed by erroneous software patents issued in ignorance of prior art, willbe harmed in the future by an ever-growing number of valid patents.Will the U.S. Bene�t Internationally From Software Patents?Some speakers claimed software patents may bene�t very large American companies on the inter-national stage. Such arguments tended to be wrapped up in patriotism.Of course, nothing is easier than to excite people on the argument that everythingshould be made in this country and not imported: though what would happen ifanybody really tried to carry that out is the same as would happen if everybodyexpelled his breath from his body and never drew any breath in.|Viscount Simon, Parliamentary Debates, House of Lords, 1949.What is good for General Motors, or other very large companies such as IBM and AT&T, maynot be good for America, or for the American software industry. Patents are permitted by theConstitution to promote progress, not to promote the �nancial interests of IBM and AT&T.In evaluating the international aspects of software patents it is important to remember that eco-nomics is not a zero-sum game. It is also important to remember that trade between two nations,when it occurs, is bene�cial to both nations.There are a number of international issues that were not raised. The economic powerhouse ofthe American economy is the small business. The Japanese economy, by contrast, is driven byextremely large conglomerates. Software patents appear to favor large corporations with theirextensive research facilities at the expense of the small entrepreneur. This might be acceptable iflarge corporations were equally adept at bringing innovative products to market, but they haveoften proven ine�ective at doing so.Between 1989 and 1992, Hitachi acquired 30 times more software patents than even that giant ofthe American software industry, Microsoft. Yet the value of the software Hitachi contributes to theU.S. economy is negligible. Similarly, despite having developed the graphical user interface, Xeroxfailed in its attempts to bring this important technological software advance to market.

5Does Software Progress Quickly or Slowly?One of the reasons patents are harmful to software is that progress is very fast. Successful softwareproducts normally make all their pro�ts in a year or two; then they are replaced by newer versions.Programs a few years old are considered obsolescent.Yet one supporter of software patents claimed this was false | he claimed software progressesslowly. He illustrated this by mentioning techniques that were known two or three decades ago andare still very useful today.How can we reconcile these contradictory claims?There's not really a contradiction. When we say that software progresses rapidly, we mean that newtechniques and features appear at a rapid pace; this makes software a few years old very obsolete.At the same time, some software techniques and features do remain useful for decades. We expectnatural order recalculation, Quicksort, and public key encryption, to be used for as long as peopledevelop software.So software moves fast in one respect, and sometimes slowly in another. Which one is the realmeasure of progress in software? Both, or neither | it depends on your purpose. The purpose athand is to determine how much harm software patents do and how much good they do.Because techniques remain useful for decades, programmers �ve, ten and �fteen years from now willneed to infringe today's software patents. This is why software patents can impede development somuch. An up-to-date software product will use many new techniques as well as many old ones. Theonly software you can write without infringing patents is software two decades obsolete; because somany new techniques have appeared since then, few users want such software.We may also ask how much good software patents do. The answer to this question depends onmany factors | such as, whether most of the techniques would be developed and published withoutpatents. Experience until the early 80s, when the software �eld operated largely without patents,suggests that they would be; that software patents do little good, and we do not need them toencourage progress in software.If Hardware is Patentable, Shouldn't Software be Patentable too?The argument has been made that it would be contradictory if an invention was patentable whenimplemented in hardware, but not patentable when implemented in software.The purpose of the patent system is to promote progress. If software patents do not promoteprogress, then permitting them in the name of some sort of legislative uniformity is contrary to theConstitution. Declaring software non-patentable actually provides clarity to intellectual propertylaw. It helps neatly divide between creations having a physical embodiment, secured using patents,and creations purely of the mind, secured using copyright. A division similar to this is apparent inthe wording of the Constitution. We therefore do not detect any contradiction in making softwarenon-patentable.

6Anything Under the Sun Made by ManArguments in favor of the continued granting of software patents made reference to the followingquote on patentable subject matter used by the Supreme Court.: : : anything under the Sun that is made by man : : :| Diamond v. Chakrabarty, 447 U.S. 303.The Supreme Court used this quote with regard to how to interpret the current patent law. Notwith-standing these words, some subject areas remain unpatentable under current law: mathematicalalgorithms, methods of doing business, and so forth. But when we ask what the law should be |whether the granting of software patents constitutes sound economic policy | reference to the lawas it currently stands doesn't help answer the question.Copyright is E�ective and E�cientPatents are used in other industries to prevent companies from using, but not paying for, the resultsof their rivals' research and development. Permitting this would be a serious disincentive againstR&D investment.Unlike every other industry subject to patents, the software industry is unique in that its productsare also subject to copyright. Copyrights ensures that to be commercially successful, a companychoosing to follow another must spend as much to develop a program as the original �rm. Indeed,the history of spreadsheets, word processors, and virtually every other software product suggeststhat it is actually more expensive to follow than to lead. A product that seeks to displace themarket leader can only do so by incorporating new features, thereby making it more expensive todevelop than the original product.Copyright is e�ective because it protects precisely the product that has been developed. It preventsother companies from bene�ting by copying your product, while at the same time permitting themto reap the full bene�ts of anything they develop.Copyright is e�cient because it enables �rms to compete on the basis of rival implementations.This competition is vital for the e�cient allocation of economic resources. The traditional literalaspects copyright doctrine is also e�cient because it has negligible administrative overhead andpresents no uncertainties. A small startup has certainty in the knowledge that they control whatthey create.Given that copyright law e�ectively and e�ciently achieves the economic aims of the patent system,there is simply no need for software patents.

7A Summary of the League's Position: Why Software Should Not bePatentedAppendix B provides an example of why the economic e�ects of patents vary from one industry toanother as a result of industry speci�c economic factors. A consideration of the economic factorsassociated with the software industry suggests that the the granting of software patents will harmboth the most economically productive sector of the software industry, and the American economyas a whole. This is because the software industry is highly competitive and software patents stiethis competition. Software patents will take pro�ts from �rms developing software that solves realcustomer problems, �rms adding signi�cant value to the American economy. Software patents willtransfer wealth to �rms that add little value to the software industry.Unlike every other industry subject to the patent system, the software industry is unique in alsobeing subject to copyright. Copyright in its traditional literal aspects form provides an e�ectiveand e�cient form of intellectual property. There is simply no bene�t to be gained from grantingpatents. Moreover, software patents, by sending the industry the wrong economic signals, are likelyto signi�cantly reduce the industry's e�ciency.The League for Programming Freedom believes that the government must take action to preventsoftware patents seriously reducing the economic e�ciency of the software industry.What Needs to be DoneSoftware patents appear economically damaging. A number of possible solutions exist. It mightbe desirable to declare software non-patentable. Or it might be preferable to the limit the scope ofthe patent monopoly in such a way as to permit the production and use of software intended for ageneral purpose computer.It is not worth arguing over which of the many possibilities is most desirable at this stage. A �nalconclusion regarding the e�ects of software patents on the software industry should �rst be reached.Then, if it turns out the e�ects of software patents are indeed negative, attention can be focusedon how to best solve the problem.

Appendix A: Example of How Software Related Patents can be Classi�ed. 8AppendixA: Example of How Software Related Patentscan be Classi�ed.By examining all the patents granted during the week of March 19, 1991, we seek to show howit is possible to identify and classify software related patents using any of a number of di�erentcharacteristics. Veri�cation this was possible was important in determining that there are unlikelyto be any problems in formulating legislation to prevent software patents.The importance of the table below has less to do with the de�nitions employed, than the fact itshows it is possible to identify and classify software related patents in a number of important anduseful ways. The de�nitions we employed were:� \Infringed using software": Does the most likely method of infringing the patent involve the useof computer software? Software is de�ned as being composed of ideal infallible mathematicalcomponents.� \Applicable to general purpose computers": Is it likely that the patent may be infringed byrunning software on a general purpose computer?� \Applicable to embedded systems": Is it likely that the patent may be infringed when runningsoftware in an embedded system? An embedded system is a computer residing in a specialpurpose hardware environment, such as an automobile engine control system.� \Mental process": A mental process patent that can be infringed by mere thought | if youthink hard enough, are given suitable input values, and ignore any post solution activity.� \Standard technique; special domain": A patent granted for the application of a well knowntechnique to solve a problem in a particular software related domain.� \Claim on generic functionality": A patent that includes a claim worded to cover all possiblesolutions to the problem being faced. One speaker at the San Jose hearings described suchpatents as representing the di�erence between patenting a particular mouse trap and patentingthe concept of catching mice.In compiling this table, we examined only what we felt was the most signi�cant claim of eachpatent.

Appendix A: Example of How Software Related Patents can be Classi�ed. 9patent infringed applicable applicable mental standard claim onnumber using to general to process technique; genericsoftware purpose embedded special functionalitycomputers systems domain5,000,030 yes yes yes yes yes no5,000,039 yes no yes yes yes no5,000,041 no no no yes yes no5,000,042 yes no yes yes yes no5,000,147 no no no yes yes no5,000,148 yes no yes yes no yes5,000,149 yes no yes yes no yes5,000,150 yes no yes yes no yes5,000,188 yes yes yes yes no yes5,000,189 yes no yes yes no no5,000,276 no no yes no yes no5,000,281 yes no yes yes yes no5,000,381 no no no yes yes no5,000,382 no no no yes yes no5,000,592 yes no yes yes yes no5,000,711 yes yes no yes yes no5,000,924 yes no yes yes no yes5,001,067 yes yes yes yes no yes5,001,344 yes yes no yes no yes5,001,418 yes yes yes yes yes no5,001,429 yes yes yes yes no yes5,001,447 yes yes no yes no yes5,001,471 yes no yes yes yes no5,001,472 no no no yes no no5,001,476 yes no yes yes yes no5,001,477 yes yes no yes yes no5,001,478 yes yes no yes no yes5,001,479 no no no yes no yes5,001,489 no no no yes yes no5,001,490 yes yes yes yes no no5,001,549 no no no yes no yes5,001,559 yes yes yes yes no yes5,001,560 no no no yes no yes5,001,561 no no no yes no yes5,001,568 no no yes yes no no5,001,569 yes yes no yes no no5,001,573 yes yes yes yes no no5,001,575 yes yes yes yes no no5,001,628 yes yes no yes no yes5,001,630 yes yes no yes no yes5,001,631 yes yes no yes no yes5,001,632 no no yes no yes no5,001,633 yes yes yes yes yes no5,001,634 yes yes no yes no yes5,001,635 yes no yes yes no yes

Appendix A: Example of How Software Related Patents can be Classi�ed. 105,001,636 yes no yes yes no yes5,001,637 yes no yes yes no yes5,001,638 no no yes yes yes no5,001,639 yes no yes yes no yes5,001,640 yes no yes yes no yes5,001,642 no no yes yes no yes5,001,648 yes no yes yes yes no5,001,650 yes no yes yes no yes5,001,651 no no no yes yes no5,001,653 yes no yes yes no yes5,001,654 yes yes no yes no yes5,001,660 yes no yes yes no yes5,001,662 no no no yes no no5,001,666 yes yes no yes no yes5,001,677 yes yes no yes no yes5,001,689 yes no yes yes no yes5,001,696 no yes no no no yes5,001,697 yes no yes yes no yes5,001,702 yes no yes yes no yes5,001,706 no no yes yes no yes5,001,707 yes no yes yes yes no5,001,710 yes yes yes yes no yes5,001,714 yes yes no yes no yes5,001,715 yes yes yes yes yes no5,001,724 yes no yes yes no no5,001,727 yes no yes yes yes no5,001,729 yes no yes yes yes no5,001,730 yes yes no yes yes no5,001,736 no no no yes yes no5,001,740 yes no yes yes yes no5,001,742 yes no yes yes no yes5,001,744 yes no yes yes yes no5,001,745 yes yes no yes no yes5,001,747 yes no yes yes yes no5,001,750 yes no yes yes no no5,001,752 yes no yes yes yes no5,001,753 yes no yes yes no no5,001,754 yes yes no yes yes no5,001,755 yes yes yes yes yes no5,001,758 yes yes yes yes yes no5,001,759 yes yes yes yes no no5,001,760 yes yes yes yes no no5,001,761 yes yes yes yes no no5,001,764 yes yes yes yes no yes5,001,765 no no no yes no no5,001,766 yes yes yes yes no no5,001,767 no no no yes yes no5,001,768 no no no yes yes no5,001,769 yes yes no yes no yesall others no no no no varies varies

Appendix A: Example of How Software Related Patents can be Classi�ed. 11Patents that apply to software intended for use on general purpose computers are likely to havegreater ill-e�ect than software intended for use on embedded systems. Granting software patents forthe application of a well known techniques to particular software �elds is also particularly hard tojustify on economic grounds. Combining suitable legal de�nitions for terms used in the above tableshows how it should be possible to formulate a de�nition of statutory subject matter under-pinnedby economic rationalism.

Appendix B: Example Showing Varying Economic E�ects of the Patent System 12AppendixB: Example ShowingVarying EconomicE�ects of the Patent SystemAs an example of how the patent system is dependent on economic factors that vary from industryto industry, we consider just one factor, the overall size of an industry.Let's imagine that there are 5,000 people employed by the candle-making industry in the U.S. andthat it has been determined based on sound economic principles that the optimal life for a patentin the candle-making industry is 20 years.Suppose the demand for candles were twice what it actually is. The candle-making industrywould be almost twice its earlier size, employing close to 10,000 people. Under a set of economicassumptions reasonable for the candle-making (or software) industry, economics would then dictatea cut in the length of patents for the candle-making industry. Cutting the length of patents byone half would yield roughly the same �nancial incentive to invent, and thus the same rate ofprogress as existed earlier. Alternatively we might consider cutting the length of patents by onlyone quarter. In so doing we are sending a signal to the candle-making industry regarding theincreased net economic value of improvements in the candle-making process. This signal howeverhas to be traded o� against the negative e�ect on industrial e�ciency caused by the increasedlack of competition. When the size of the industry increases the optimal lifetime for patents needsto be shortened. Without knowledge of various factors relating to the inventive process in thecandle-making industry the new length for patents is a matter for debate.It isn't fair to directly compare the software industry to the candle-making industry; the softwareindustry is far larger, but it is also far broader. From the candle-making example it should bepossible to understand how the traditional 17 year patent grant may in some industries conceivablyhurt progress by stiing competition more than it helps progress by encouraging innovation. Thesoftware industry employs some 6 million people. A signi�cant fraction of them develop software.More people are probably engaged in software development than in all other branches of engineeringcombined. As a result in the software industry reinvention has become common place, and softwarepatents seriously harm competition.

