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Abstract

Securing file resources under Linux is a team
effort. No one library, application, or kernel
feature can stand alone in providing robust se-
curity. Current Linux access control mecha-
nisms work in concert to provide a certain level
of security, but they depend upon the integrity
of the machine itself to protect that data. Once
the data leaves that machine, or if the machine
itself is physically compromised, those access
control mechanisms can no longer protect the
data in the filesystem. At that point, data pri-
vacy must be enforced via encryption.

As Linux makes inroads in the desktop market,
the need for transparent and effective data en-
cryption increases. To be practically deploy-
able, the encryption/decryption process must
be secure, unobtrusive, consistent, flexible, re-
liable, and efficient. Most encryption mecha-
nisms that run under Linux today fail in one
or more of these categories. In this paper, we
discuss solutions to many of these issues via
the integration of encryption into the Linux
filesystem. This will provide access control en-
forcement on data that is not necessarily un-
der the control of the operating environment.
We also explore how stackable filesystems, Ex-
tended Attributes, PAM, GnuPG web-of-trust,
supporting libraries, and applications (such as
GNOME/KDE) can all be orchestrated to pro-

vide robust encryption-based access control
over filesystem content.

1 Development Efforts

This paper is motivated by an effort on the part
of the IBM Linux Technology Center to en-
hance Linux filesystem security through bet-
ter integration of encryption technology. The
author of this paper is working together with
the external community and several members
of the LTC in the design and development of
a transparent cryptographic filesystem layer in
the Linux kernel. The “we” in this paper refers
to immediate members of the author’s devel-
opment team who are working together on this
project, although many others outside that de-
velopment team have thus far had a significant
part in this development effort.

2 The Filesystem Security

2.1 Threat Model

Computer users tend to be overly concerned
about protecting their credit card numbers from
being sniffed as they are transmitted over the



Internet. At the same time, many do not think
twice when sending equally sensitive informa-
tion in the clear via an email message. A
thief who steals a removable device, laptop, or
server can also read the confidential files on
those devices if they are left unprotected. Nev-
ertheless, far too many users neglect to take the
necessary steps to protect their files from such
an event. Your liability limit for unauthorized
charges to your credit card is $50 (and most
credit card companies waive that liability for
victims of fraud); on the other hand, confiden-
tiality cannot be restored once lost.

Today, we see countless examples of neglect
to use encryption to protect the integrity and
the confidentiality of sensitive data. Those
who are trusted with sensitive information rou-
tinely send that information as unencrypted
email attachments. They also store that infor-
mation in clear text on disks, USB keychain
drives, backup tapes, and other removable me-
dia. GnuPG[7] and OpenSSL[8] provide all the
encryption tools necessary to protect this infor-
mation, but these tools are not used nearly as
often as they ought to be.

If required to go through tedious encryption or
decryption steps every time they need to work
with a file or share it, people will select inse-
cure passwords, transmit passwords in an inse-
cure manner, fail to consider or use public key
encryption options, or simply stop encrypting
their files altogether. If security is overly ob-
structive, people will remove it, work around
it, or misuse it (thus rendering it less effective).
As Linux gains adoption in the desktop market,
we need integrated file integrity and confiden-
tiality that is seamless, transparent, easy to use,
and effective.

2.2 Integration of File Encryption into the
Filesystem

Several solutions exist that solve separate
pieces of the problem. In one example high-
lighting transparency, employees within an or-
ganization that uses IBM™ Lotus Notes™ [9]
for its email will not even notice the complex
PKI or the encryption process that is integrated
into the product. Encryption and decryption
of sensitive email messages is seamless to the
end user; it involves checking an “Encrypt”
box, specifying a recipient, and sending the
message. This effectively addresses a signifi-
cant file in-transit confidentiality problem. If
the local replicated mailbox database is also
encrypted, then it also addresses confidential-
ity on the local storage device, but the protec-
tion is lost once the data leaves the domain of
Notes (for example, if an attached file is saved
to disk). The process must be seamlessly in-
tegrated intoall relevant aspects of the user’s
operating environment.

In Section 4, we discuss filesystem security
in general under Linux, with an emphasis
on confidentiality and integrity enforcement
via cryptographic technologies. In Section
6, we propose a mechanism to integrate en-
cryption of files at the filesystem level, in-
cluding integration of GnuPG[7] web-of-trust,
PAM[10], a stackable filesystem model[2], Ex-
tended Attributes[6], and libraries and applica-
tions, in order to make the entire process as
transparent as possible to the end user.

3 A Team Effort

Filesystem security encompasses more than
just the filesystem itself. It is a team effort,
involving the kernel, the shells, the login pro-
cesses, the filesystems, the applications, the ad-
ministrators, and the users. When we speak of



“filesystem security,” we refer to the security
of the files in a filesystem, no matter what ends
up providing that security.

For any filesystem security problem that ex-
ists, there are usually several different ways of
solving it. Solutions that involve modifications
in the kernel tend to introduce less overhead.
This is due to the fact that context switches and
copying of data between kernel and user mem-
ory is reduced. However, changes in the ker-
nel may reduce the efficiency of the kernel’s
VFS while making it both harder to maintain
and more bug-prone. As notable exceptions,
Erez Zadok’s stackable filesystem framework,
FiST[3], and Loop-aes, require no change to
the current Linux kernel VFS. Solutions that
exist entirely in userspace do not complicate
the kernel, but they tend to have more overhead
and may be limited in the functionality they are
able to provide, as they are limited by the inter-
face to the kernel from userspace. Since they
are in userspace, they are also more prone to
attack.

4 Aspects of Filesystem Security

Computer security can be decomposed into
several areas:

• Identifying who you are and having the
machine recognize that identification (au-
thentication).

• Determining whether or not you should be
granted access to a resource such as a sen-
sitive file (authorization). This is often
based on the permissions associated with
the resource by its owner or an adminis-
trator (access control).

• Transforming your data into an encrypted
format in order to make it prohibitively

costly for unauthorized users to decrypt
and view (confidentiality).

• Performing checksums, keyed hashes,
and/or signing of your data to make unau-
thorized modifications of your data de-
tectable (integrity).

4.1 Filesystem Integrity

When people consider filesystem security, they
traditionally think about access control (file
permissions) and confidentiality (encryption).
File integrity, however, can be just as impor-
tant as confidentiality, if not more so. If a script
that performs an administrative task is altered
in an unauthorized fashion, the script may per-
form actions that violate the system’s security
policies. For example, many rootkits modify
system startup and shutdown scripts to facili-
tate the attacker’s attempts to record the user’s
keystrokes, sniff network traffic, or otherwise
infiltrate the system.

More often than not, the value of the data
stored in files is greater than that of the ma-
chine that hosts the files. For example, if an
attacker manages to insert false data into a fi-
nancial report, the alteration to the report may
go unnoticed until substantial damage has been
done; jobs could be at stake and in more ex-
treme cases even criminal charges against the
user could result . If trojan code sneaks into the
source repository for a major project, the pub-
lic release of that project may contain a back-
door.1

Many security professionals foresee a night-
mare scenario wherein a widely propagated In-
ternet worm quietly alters the contents of word

1A high-profile example of an attempt to do this oc-
curred with the Linux kernel last year. Luckily, the
source code management process used by the kernel de-
velopers allowed them to catch the attempted insertion
of the trojan code before it made it into the actual ker-
nel.



processing and spreadsheet documents. With-
out any sort of integrity mechanism in place
in the vast majority of the desktop machines
in the world, nobody would know if any data
that traversed vulnerable machines could be
trusted. This threat could be very effectively
addressed with a combination of a kernel-level
mandatory access control (MAC)[11] protec-
tion profile and a filesystem that provides in-
tegrity and auditing capabilities. Such a com-
bination would be resistant to damage done by
a root compromise, especially if aided by a
Trusted Platform Module (TPM)[13] using at-
testation.

One can approach filesystem integrity from
two angles. The first is to have strong au-
thentication and authorization mechanisms in
place that employ sufficiently flexible policy
languages. The second is to have an auditing
mechanism, to detect unauthorized attempts at
modifying the contents of a filesystem.

4.1.1 Authentication and Authorization

The filesystem must contain support for the
kernel’s security structure, which requires
stateful security attributes on each file. Most
GNU/Linux applications today use PAM[10]
(see Section 4.1.2 below) for authentication
and process credentials to represent their au-
thorization; policy language is limited to
what can be expressed using the file owner
and group, along with the owner/group/world
read/write/execute attributes of the file. The
administrator and the current owner have the
authority to set the owner of the file or the
read/write/execute policies for that file. In
many filesystems, files may also contain addi-
tional security flags, such as an immutable or
append-only flag.

Posix Access Control Lists (ACL’s)[6] provide
for more stringent delegations of access author-

ity on a per-file basis. In an ACL, individ-
ual read/write/execute permissions can be as-
signed to the owner, the owning group, indi-
vidual users, or groups. Masks can also be ap-
plied that indicate the maximum effective per-
missions for a class.

For those who require even more flexible ac-
cess control, SE Linux[15] uses a powerful
policy language that can express a wide va-
riety of access control policies for files and
filesystem operations. In fact, Linux Security
Module (LSM)[14] hooks (see Section 4.1.3
below) exist for most of the security-relevant
filesystem operations, which makes it easier to
implement custom filesystem-agnostic security
models. Authentication and authorization are
pretty well covered with a combination of ex-
isting filesystem, kernel, and user-space solu-
tions that are part of most GNU/Linux distri-
butions. Many Linux distributions could, how-
ever, do a better job of aiding both the adminis-
trator and the user in understanding and using
all the tools that they have available to them.

Policies that safeguard sensitive data should in-
clude timeouts, whereby the user must period-
ically re-authenticate in order to continue to
access the data. In the event that the autho-
rized users neglect to lock down the machine
before leaving work for the day, timeouts help
to keep the custodial staff from accessing the
data when they comes in at night to clean the
office. As usual, this must be implemented in
such a way as to be unobtrusive to the user. If a
user finds a security mechanism overly impos-
ing or inconvenient, he will usually disable or
circumvent it.

4.1.2 PAM

Pluggable Authentication Modules (PAM)[10]
implement authentication-related security poli-
cies. PAM offers discretionary access control



(DAC)[12]; applications must defer to PAM in
order to authenticate a user. If the PAM module
function that is called returns an affirmative an-
swer, then the application considers the action
to be authenticated, and vice versa. The ex-
act mechanism that the PAM function uses to
evaluate the authentication is dependent on the
module called.2

In the case of filesystem security and encryp-
tion, PAM can be employed to obtain and for-
ward keys to a filesystem encryption layer in
kernel space. This would allow seamless inte-
gration with any key retrieval mechanism that
can be coded as a Pluggable Authentication
Module.

4.1.3 LSM

Linux Security Modules (LSM) can provide
customized security models. One possible use
of LSM is to allow decryption of certain files
only when a physical device is connected to the
machine. This could be, for example, a USB
keychain device, a Smartcard, or an RFID de-
vice. Some devices of these classes can also be
used to house the encryption keys (retrievable
via PAM, as previously discussed).

4.1.4 Auditing

The second angle to filesystem integrity is au-
diting. Auditing should only fill in where the
authentication and authorization mechanisms
fall short. In a utopian world, where security
systems are perfect and trusted people always
act trustworthily, auditing does not have much
of a use. In reality, code that implements secu-
rity has defects and vulnerabilities. Passwords
can be compromised, and authorized people

2This is parameterizable in the configuration files
found under/etc/pam.d/

can act in an untrustworthy manner. Auditing
can involve keeping a log of all changes made
to the attributes of the file or to the file data it-
self. It can also involve taking snapshots of the
attributes and/or contents of the file and com-
paring the current state of the file with what
was recorded in a prior snapshot.

Intrusion detection systems (IDS), such as
Tripwire[16], AIDE[17], or Samhain[18], per-
form auditing functions. As an example, Trip-
wire periodically scans the contents of the
filesystem, checking file attributes, such as the
size, the modification time, and the crypto-
graphic hash of each file. If any attributes for
the files being checked are found to be altered,
Tripwire will report it. This approach can work
fairly well in cases where the files are not ex-
pected to change very often, as is the case with
most system scripts, shared libraries, executa-
bles, or configuration files. However, care must
be taken to assure that the attacker cannot also
modify the Tripwire’s database when he modi-
fies a system file; the integrity of the IDS sys-
tem itself must also be assured.

In cases where a file changes often, such as
a database file or a spreadsheet file in an ac-
tive project, we see a need for a more dy-
namic auditing solution - one which is per-
haps more closely integrated with the filesys-
tem itself. In many cases, the simple fact that
the file has changed does not imply a secu-
rity violation. We must also know who made
the change. More robust security require-
ments also demand that we know what parts
of the file were changed and when the changes
were made. One could even imagine scenarios
where the context of the change must also be
taken into consideration (i.e., who was logged
in, which processes were running, or what net-
work activity was taking place at the time the
change was made).

File integrity, particularly in the area of au-
diting, is perhaps the security aspect of Linux



filesystems that could use the most improve-
ment. Most efforts in secure filesystem devel-
opment have focused on confidentiality more
so than integrity, and integrity has been reg-
ulated to the domain of userland utilities that
must periodically scan the entire filesystem.
Sometimes, just knowing that a file has been
changed is insufficient. Administrators would
like to know exactly how the attacker made
the changes and under what circumstances they
were made.

Cryptographic hashes are often used. These
can detect unauthorized circumvention of the
filesystem itself, as long as the attacker forgets
(or is unable) to update the hashes when mak-
ing unauthorized changes to the files. Some
auditing solutions, such as the Linux Audit-
ing System (LAuS)3 that is part of SuSE Linux
Enterprise Server, can track system calls that
affect the filesystem. Another recent addition
to the 2.6 Linux kernel is the Light-weight
Auditing Framework written by Rik Faith[28].
These are implemented independently of the
filesystem itself, and the level of detail in the
records is largely limited to the system call pa-
rameters and return codes. It is advisable that
you keep your log files on a separate machine
than the one being audited, since the attacker
could modify the audit logs themselves once
he has compromised the machine’s security.

4.1.5 Improvements on Integrity

Extended Attributes provide for a convenient
way to attach metadata relating to a file to the
file itself. On the premise that possession of
a secret equates to authentication, every time
an authenticated subject makes an authorized
write to a file, a hash over the concatenation of

3Note that LAuS is being covered in more detail in
the 2004 Ottawa Linux Symposium by Doc Shankar,
Emily Ratliff, and Olaf Kirch as part of their presenta-
tion regarding CAPP/EAL3+ Certification.

that secret to the file contents (keyed hashing;
HMAC is one popular standard) can be writ-
ten as an Extended Attribute on that file. Since
this action would be performed on the filesys-
tem level, the user would not have to conscien-
tiously re-run userspace tools to perform such
an operation every time he wants to generate
an integrity verifier on the file.

This is an expensive operation to perform over
large files, and so it would be a good idea to
define extent sizes over which keyed hashes are
formed, with the Extended Attributes including
extent descriptors along with the keyed hashes.
That way, a small change in the middle of a
large file would only require the keyed hash
to be re-generated over the extent in which the
change occurs. A keyed hash over the sequen-
tial set of the extent hashes would also keep an
attacker from swapping around extents unde-
tected.

4.2 File Confidentiality

Confidentiality means that only authorized
users can read the contents of a file. Sometimes
the names of the files themselves or a directory
structure can be sensitive. In other cases, the
sizes of the files or the modification times can
betray more information than one might want
to be known. Even the security policies pro-
tecting the files can reveal sensitive informa-
tion. For example, “Only employees of Novell
and SuSE can read this file” would imply that
Novell and SuSE are collaborating on some-
thing, and neither of them may want this fact
to be public knowledge as of yet. Many inter-
esting protocols have been developed that can
address these sorts of issues; some of then are
easier to implement than others.

When approaching the question of confiden-
tiality, we assume that the block device that
contains the file is vulnerable to physical com-
promise. For example, a laptop that contains



sensitive material might be lost, or a database
server might be stolen in a burglary. In either
event, the data on the hard drive must not be
readable by an unauthorized individual. If any
individual must be authenticated before he is
able to access to the data, then the data is pro-
tected against unauthorized access.

Surprisingly, many users surrender their own
data’s confidentiality (and more often than not
they do so unwittingly). It has been my per-
sonal observation that most people do not fully
understand the lack of confidentiality afforded
their data when they send it over the Inter-
net. To compound this problem, comprehend-
ing and even using most encryption tools takes
considerable time and effort on the part of most
users. If sensitive files could beencrypted by
default, only to be decrypted by those autho-
rized at the time of access, then the user would
not have to expend so much effort toward pro-
tecting his confidentiality.

By putting the encryption at the filesystem
layer, this model becomes possible without any
modifications to the applications or libraries.
A policy at that layer can dictate that certain
processes, such as the mail client, are to re-
ceive the encrypted version any files that are
read from disk.

4.2.1 Encryption

File confidentiality is most commonly accom-
plished through encryption. For performance
reasons, secure filesystems use symmetric key
cryptography, like AES or Triple-DES, al-
though an asymmetric public/private keypair
may be used to encrypt the symmetric key in
some key management schemes. This hybrid
approach is in common use through SSL and
PGP encryption protocols.

One of our proposals to extend Cryptfs is to
mirror the techniques used in GnuPG encryp-

tion. If the symmetric key that protects the con-
tents of a file is encrypted with the public key
of the intended recipient of the file and stored
as an Extended Attribute of the file, then that
file can be transmitted in multiple ways (e.g.,
physical device such as removable storage); as
long as the Extended Attributes of the file are
preserved across filesystem transfers, then the
recipient with the corresponding private key
has all the information that his Cryptfs layer
needs to transparently decrypt the contents of
the file.

4.2.2 Key Management

Key management will make or break a cryp-
tographic filesystem.[5] If the key can be eas-
ily compromised, then even the strongest ci-
pher will provide weak protection. If your
key is accessible in an unencrypted file or in
an unprotected region of memory, or if it is
ever transmitted over the network in the clear,
a rogue user can capture that key and use
it later. Most passwords have poor entropy,
which means that an attacker can have pretty
good success with a brute force attack against
the password. Thus the weakest link in the
chain for password-based encryption is usu-
ally the password itself. The Cryptographics
Filesystem (CFS)[22] mandates that the user
choose a password with a length of at least 16
characters4.

Ideally, the key would be kept in password-
encrypted form on a removable device (like a
USB keychain drive) that is stored separately
from the files that the key is used to encrypt.
That way, an attacker would have to both com-
promise the password and gain physical access

4The subject of secure password selection, al-
though an important one, is beyond the scope of this
article. Recommended reading on this subject is at
http://www.alw.nih.gov/Security/Docs/
passwd.html .



to the removable device before he could de-
crypt your files.

Filesystem encryption is one of the most ex-
citing applications for the Trusted Computing
Platform. Given that the attacker has physi-
cal access to a machine with a Trusted Plat-
form Module, it is significantly more difficult
to compromise the key. By using secret sharing
(otherwise known askey splitting)[4], the ac-
tual key used to decrypt a file on the filesystem
can be contained as both the user’s key and the
machine’s key (as contained in the TPM). In
order to decrypt the files, an attacker must not
only compromise the user key, but he must also
have access to the machine on which the TPM
chip is installed. This “binds” the encrypted
files to the machine. This is especially useful
for protecting files on removable backup me-
dia.

4.2.3 Cryptanalysis

All block ciphers and most stream ciphers are,
to various degrees, vulnerable to successful
cryptanalysis. If a cipher is used improperly,
then it may become even easier to discover the
plaintext and/or the key. For example, with
certain ciphers operating in certain modes, an
attacker could discover information that aids
in cryptanalysis by getting the filesystem to
re-encrypt an already encrypted block of data.
Other times, a cryptanalyst can deduce infor-
mation about the type of data in the encrypted
file when that data has predictable segments of
data, like a common header or footer (thus al-
lowing for a known-plaintext attack).

4.2.4 Cipher Modes

A block encryption mode that is resistant to
cryptanalysis can involve dependencies among

chains of bytes or blocks of data. Cipher-
block-chaining (CBC) mode, for example, pro-
vides adequate encryption in many circum-
stances. In CBC mode, a change to one block
of data will require that all subsequent blocks
of data be re-encrypted. One can see how this
would impact performance for large files, as a
modification to data near the beginning of the
file would require that all subsequent blocks be
read, decrypted, re-encrypted, and written out
again.

This particular inefficiency can be effectively
addressed by defining chaining extents. By
limiting regions of the file that encompass
chained blocks, it is feasible to decrypt and re-
encrypt the smaller segments. For example, if
the block size for a cipher is 64 bits (8 bytes)
and the block size, which is (we assume) the
minimum unit of data that the block device
driver can transfer at a time (512 bytes) then
one could limit the number of blocks in any ex-
tent to 64 blocks. Depending on the plaintext
(and other factors), this may be too few to ef-
fectively counter cryptanalysis, and so the ex-
tent size could be set to a small multiple of the
page size without severely impacting overall
performance. The optimal extent size largely
depends on the access patterns and data pat-
terns for the file in question; we plan on bench-
marking against varying extent lengths under
varying access patterns.

4.2.5 Key Escrow

The proverbial question, “What if the sysad-
min gets hit by a bus?” is one that no organi-
zation should ever stop asking. In fact, some-
times no one person should alone have inde-
pendent access to the sensitive data; multiple
passwords may be required before the data is
decrypted. Shareholders should demand that
no single person in the company have full ac-
cess to certain valuable data, in order to miti-



gate the damage to the company that could be
done by a single corrupt administrator or exec-
utive. Methods for secret sharing can be em-
ployed to assure that multiple keys be required
for file access, and (m,n)-threshold schemes [4]
can ensure that the data is retrievable, even if a
certain number of the keys are lost. Secret shar-
ing would be easily implementable as part of
any of the existing cryptographic filesystems.

4.3 File Resilience

The loss of a file can be just as devastating
as the compromise of a file. There are many
well-established solutions to performing back-
ups of your filesystem, but some cryptographic
filesystems preclude the ability to efficiently
and/or securely use them. Backup tapes tend
to be easier to steal than secure computer sys-
tems are, and if unencrypted versions of se-
cure files exist on the tapes, that constitutes an
often-overlooked vulnerability.

The Linux 2.6 kernel cryptoloop device5

filesystem is an all-or-nothing approach. Most
backup utilities must be given free reign on
the unencrypted directory listings in order to
perform incremental backups. Most other
encrypted filesystems keep sets of encrypted
files in directories in the underlying filesys-
tem, which makes incremental backups possi-
ble without giving the backup tools access to
the unencrypted content of the files.

The backup utilities must, however, maintain
backups of the metadata in the directories con-
taining the encrypted files in addition to the
files themselves. On the other hand, when the
filesystem takes the approach of storing the
cryptographic metadata as Extended Attributes
for each file, then backup utilities need only
worry about copying just the file in question to

5Note that this is deprecated and is in the process of
being replaced with the Device Mapper crypto target.

the backup medium (preserving the Extended
Attributes, of course).

4.4 Advantages of FS-Level, EA-Guided En-
cryption

Most encrypted filesystem solutions either op-
erate on the entire block device or operate on
entire directories. There are several advantages
to implementing filesystem encryption at the
filesystem level and storing encryption meta-
data in the Extended Attributes of each file:

• Granularity: Keys can be mapped to in-
dividual files, rather than entire block de-
vices or entire directories.

• Backup Utilities: Incremental backup
tools can correctly operate without having
to have access to the decrypted content of
the files it is backing up.

• Performance: In most cases, only cer-
tain files need to be encrypted. System
libraries and executables, in general, do
not need to be encrypted. By limiting the
actual encryption and decryption to only
those files that really need it, system re-
sources will not be taxed as much.

• Transparent Operation: Individual en-
crypted files can be easily transfered off of
the block device without any extra trans-
formation, and others with authorization
will be able to decrypt those files. The
userspace applications and libraries do not
need to modified and recompiled to sup-
port this transparency.

Since all the information necessary to decrypt
a file is contained in the Extended Attributes
of the file, it is possible for a user on a ma-
chine that is not running Cryptfs to use user-
land utilities to access the contents of the file.



This also applies to other security-related op-
erations, like verifying keyed hashes. This ad-
dresses compatibility issues with machines that
are not running the encrypted filesystem layer.

5 Survey of Encrypted Filesystems

5.1 Encrypted Loopback Filesystems

5.1.1 Loop-aes

The most well-known method of en-
crypting a filesystem is to use a loop-
back encrypted filesystem6. Loop-
aes[20] is part of the 2.6 Linux kernel
(CONFIGBLK DEV CRYPTOLOOP). It
performs encryption at the block device level.
With Loop-aes, the administrator can choose
whatever cipher he wishes to use with the
filesystem. Themount package on most
popular GNU/Linux distributions contains the
losetuputility, which can be used to set up the
encrypted loopback mount (you can choose
whatever cipher that the kernel supports; we
use blowfish in this example):

root# modprobe cryptoloop
root# modprobe blowfish
root# dd if=/dev/urandom of=encrypted.img \

bs=4k count=1000
root# losetup -e blowfish /dev/loop0 \

encrypted.img
root# mkfs.ext3 /dev/loop0
root# mkdir /mnt/unencrypted-view
root# mount /dev/loop0 /mnt/unencrypted-view

The loopback encrypted filesystem falls short
in the fact that it is an all-or-nothing solution.
It is impossible for most standard backup util-
ities to perform incremental backups on sets
of encrypted files without being given access

6Note that Loop-aes is being deprecated, in favor of
Device Mapping (DM) Crypt

to the unencrypted files. In addition, remote
users will need to use IPSec or some other net-
work encryption layer when accessing the files,
which must be exported from the unencrypted
mount point on the server. Loop-aes is, how-
ever, the best performing encrypted filesystem
that is freely available and integrated with most
GNU/Linux distributions. It is an adequate so-
lution for many who require little more than
basic encryption of their entire filesystems.

5.1.2 BestCrypt

BestCrypt[23] is a non-free product that uses a
loopback approach, similar to Loop-aes.

5.1.3 PPDD

PPDD citeppdd is a block device driver that en-
crypts and decrypts data as it goes to and comes
from another block device. It works very much
like Loop-aes; in fact, in the 2.4 kernel, it uses
the loopback device, as Loop-aes does. PPDD
has not been ported to the 2.6 kernel. Loop-aes
takes the same approach, and Loop-aes ships
with the 2.6 kernel itself.

5.2 CFS

The Cryptographic Filesystem (CFS)[22] by
Matt Blaze is a well established transparent en-
crypted filesystem, originally written for BSD
platforms. CFS is implemented entirely in
userspace and operates similarly to NFS. A
userspace daemon, cfsd, acts as a pseudo-NFS
server, and the kernel makes RPC calls to the
daemon. The CFS daemon performs trans-
parent encryption and decryption when writ-
ing and reading data. Just as NFS can export a
directory from any exportable filesystem, CFS



can do the same, while managing the encryp-
tion on top of that filesystem.

In the background, CFS stores the metadata
necessary to encrypt and decrypt files with
the files being encrypted or decrypted on the
filesystem. If you were to look at those di-
rectories directly, you would see a set of files
with encrypted values for filenames, and there
would be a handful of metadata files mixed in.
When accessed through CFS, those metadata
files are hidden, and the files are transparently
encrypted and decrypted for the user appli-
cations (with the proper credentials) to freely
work with the data.

While CFS is capable of acting as a remote
NFS server, this is not recommended for many
reasons, some of which include performance
and security issues with plaintext passwords
and unencrypted data being transmitted over
the network. You would be better off, from a
security perspective (and perhaps also perfor-
mance, depending on the number of clients),
to use a regular NFS server to handle remote
mounts of the encrypted directories, with local
CFS mounts off of the NFS mounts.

Perhaps the most attractive attribute of CFS
is the fact that it does not require any mod-
ifications to the standard Linux kernel. The
source code for CFS is freely obtainable. It is
packaged in the Debian repositories and is also
available in RPM form. Using apt, CFS is per-
haps the easiest encrypted filesystem for a user
to set up and start using:

root# apt-get install cfs
user# cmkdir encrypted-data
user# cattach encrypted-data unencrypted-view

The user will be prompted for his pass-
word at the requisite stages. At this point,
anything the user writes to or reads from
/crypt/unencrypted-viewwill be transparently

encrypted to and decrypted from files in
encrypted-data. Note that any user on the sys-
tem can make a new encrypted directory and
attach it. It is not necessary to initialize and
mount an entire block device, as is the case
with Loop-aes.

5.3 TCFS

TCFS[24] is a variation on CFS that includes
secure integrated remote access and file in-
tegrity features. TCFS assumes the client’s
workstation is trusted, and the server cannot
necessarily be trusted. Everything sent to and
from the server is encrypted. Encryption and
decryption take place on the client side.

Note that this behavior can be mimicked with
a CFS mount on top of an NFS mount. How-
ever, because TCFS works within the kernel
(thus requiring a patch) and does not necessi-
tate two levels of mounting, it is faster than an
NFS+CFS combination.

TCFS is no longer an actively maintained
project. The last release was made three years
ago for the 2.0 kernel.

5.4 Cryptfs

As a proof-of-concept for the FiST stackable
filesystem framework, Erez Zadok, et. al. de-
veloped Cryptfs[1]. Under Cryptfs, symmetric
keys are associated with groups of files within
a single directory. The keys are generated
with password that is entered at the time that
the filesystem is mounted. The Cryptfs mount
point provides an unencrypted view of the di-
rectory that contains the encrypted files.

The authors of this paper are currently work-
ing on extending Cryptfs to provide seamless
integration into the user’s desktop environment
(see Section 6).



5.5 Userspace Encrypted Filesystems

EncFS[25] utilizes the Filesystem in Userspace
(FUSE) library and kernel module to imple-
ment an encrypted filesystem in userspace.
Like CFS, EncFS encrypts on a per-file basis.

CryptoFS[26] is similar to EncFS, except it
uses the Linux Userland Filesystem (LUFS) li-
brary instead of FUSE.

SSHFS[27], like CryptoFS, uses the LUFS ker-
nel module and userspace daemon. It limits it-
self to encrypting the files via SFTP as they are
transfered over a network; the files stored on
disk are unencrypted. From the user perspec-
tive, all file accesses take place as though they
were being performed on any regular filesys-
tem (opens, read, writes, etc.). SSHFS trans-
fers the files back and forth via SFTP with the
file server as these operations occur.

5.6 Reiser4

ReiserFS version 4 (Reiser4)[29], while still in
the development stage, features pluggable se-
curity modules. There are currently proposed
modules for Reiser4 that will perform encryp-
tion and auditing.

5.7 Network Filesystem Security

Much research has taken place in the domain of
networking filesystem security. CIFS, NFSv4,
and other networking filesystems face special
challenges in relation to user identification, ac-
cess control, and data secrecy. The NFSv4 pro-
tocol definition in RFC 3010 contains descrip-
tions of security mechanisms in section 3[30].

6 Proposed Extensions to Cryptfs

Our proposal is to place file encryption meta-
data into the Extended Attributes (EA’s) of the
file itself. Extended Attributes are a generic
interface for attaching metadata to files. The
Cryptfs layer will be extended to extract that
information and to use the information to di-
rect the encrypting and decrypting of the con-
tents of the file. In the event that the filesys-
tem does not support Extended Attributes, an-
other filesystem layer can provide that func-
tionality. The stackable framework effectively
allows Cryptfs to operate on top ofanyfilesys-
tem.

The encryption process is very similar to that of
GnuPG and other public key cryptography pro-
grams that use a hybrid approach to encrypt-
ing data. By integrating the process into the
filesystem, we can achieve a a greater degree
of transparency, without requiring any changes
to userspace applications or libraries.

Under our proposed design, when a new file is
created as an encrypted file (file creation pol-
icy enacted by Cryptfs can be dictated by di-
rectory attributes or globally defined behavior),
the Cryptfs layer generates a new symmetric
key Ks for the encryption of the data that will
be written. The owner of the file is automat-
ically authorized to access the file, and so the
symmetric key is encrypted with the public key
of the owner of the fileKu, which was passed
into the Cryptfs layer at the time that the user
logged in by a Pluggable Authentication Mod-
ule linked against libcryptfs. The encrypted
symmetric key is then added to the Extended
Attribute set of the file:

{Ks}Ku

Suppose that the user at this point wants to
grant Alice access to the file. Alice’s public
key, Ka, is in the user’s GnuPG keyring. He



Figure 1: Overview of proposed extended Cryptfs architecture

can run a utility that selects Alice’s key, ex-
tracts it from the GnuPG keyring, and passes
it to the Cryptfs layer, with instructions to
add Alice as an authorized user for the file.
The new key list in the Extended Attribute set
for the file then contains two copies of the
symmetric key, encrypted with different public
keys:

{Ks}Ku

{Ks}Ka

Note that this is not an access control directive;
it is rather a confidentiality enforcement mech-
anism that extends beyond the local machine’s
access control. Without either the user’s or Al-
ice’s private key, no entity will be able to access
the decrypted contents of the file. The machine
that harbors such keys will enact its own ac-
cess control over the decrypted file, based on
standard UNIX file permissions and/or ACL’s.

When that file is copied to a removable media
or attached to an email, as long as the Extended
Attributes are preserved, Alice will have all
the information that she needs in order to re-
trieve the symmetric key for the file and de-
crypt it. If Alice is also running Cryptfs, when

she launches an application that accesses the
file, the decryption process is entirely trans-
parent to her, since her Cryptfs layer received
her private key from PAM at the time that she
logged in.

If the user requires the ability to encrypt a file
for access by a group of users, then the user
can associate sets of public keys with groups
and refer to the groups when granting access.
The userspace application that links against
libcryptfs can then pass in the public keys to
Cryptfs for each member of the group and in-
struct Cryptfs to add the associated key record
to the Extended Attributes. Thus no special
support for groups is needed within the Cryptfs
layer itself.

6.1 Kernel-level Changes

No modifications to the 2.6 kernel itself are
necessary to support the stackable Cryptfs
layer. The Cryptfs module’s logical divi-
sions include a sysfs interface, a keystore, and
the VFS operation routines that perform the
encryption and the decryption on reads and
writes.



Figure 2: Structure of Cryptfs layer in kernel

By working with userspace daemon, it would
be possible for Cryptfs to export public key
cryptographic operations to userspace. In or-
der to avoid the need for such a daemon while
using public key cryptography, the kernel cryp-
tographic API must be extended to support it.

6.2 PAM

At login, the user’s public and private keys
need to find their way into the kernel
Cryptfs layer. This can be accomplished by
writing a Pluggable Authentication Module,
pamcryptfs.so. This module will link against
libcryptfs and will extract keys from the user’s
GnuPG keystore. The libcryptfs library will
use the sysfs interface to the Cryptfs layer to

pass the user’s keys in.

6.3 libcryptfs

The libcryptfs library works with the Cryptfs’s
sysfs interface. Userspace utilities, such as
pamcryptfs.so, GNOME/KDE, or stand-alone
utilities, will link against this library and use it
to communicate with the kernel Cryptfs layer.

6.4 User Interface

Desktop environments such as GNOME or
KDE can link against libcryptfs to provide
users with a convenient interface through
which to work with the files. For example,



by right-clicking on an icon representing the
file and selecting “Security”, the user will be
presented with a window that can be used to
control the encryption status of the file. Such
options will include whether or not the file is
encrypted, which users should be able to en-
crypt and decrypt the file (identified by their
public keys from the user’s GnuPG keyring),
what cipher is used, what keylength is used,
an optional password that encrypts the sym-
metric key, whether or not to use keyed hash-
ing over extents of the file for integrity, the
hash algorithm to use, whether accesses to the
file when no key is available should result in
an error or in the encrypted blocks being re-
turned (perhaps associated with UID’s - good
for backup utilities), and other properties that
are controlled by the Cryptfs layer.

6.5 Example Walkthrough

When a file’s encryption attribute is set, the
first thing that the Cryptfs layer will do will be
to generate a new symmetric key, which will be
used for all encryption and decryption of the
file in question. Any data in that file is then
immediately encrypted with that key. When
using public key-enforced access control, that
key will be encrypted with the process owner’s
private key and stored as an EA of the file.
When the process owner wishes to allow oth-
ers to access the file, he encrypts the symmet-
ric key with the their public keys. From the
user’s perspective, this can be done by right-
clicking on an icon representing the file, select-
ing “Security→Add Authorized User Key”,
and having the user specify the authorized user
while using PAM to retrieve the public key for
that user.

When using password-enforced access control,
the symmetric key is instead encrypted using a
key generated from a password. The user can
then share that password with everyone who

he authorized to access the file. In either case
(public key-enforced or password-enforced ac-
cess control), revocation of access to future
versions of the file will necessitate regenera-
tion and re-encryption of the symmetric key.

Suppose the encrypted file is then copied to a
removable device and delivered to an autho-
rized user. When that user logged into his ma-
chine, his private key was retrieved by the key
retrieval Pluggable Authentication Module and
sent to the Cryptfs keystore. When that user
launches any arbitrary application and attempts
to access the encrypted file from the removable
media, Cryptfs retrieves the encrypted sym-
metric key correlating with that user’s public
key, uses the authenticated user’s private key
to decrypt the symmetric key, associates that
symmetric key with the file, and then proceeds
to use that symmetric key for reading and writ-
ing the file. This is done in an entirely trans-
parent manner from the perspective of the user,
and the file maintains its encrypted status on
the removable media throughout the entire pro-
cess. No modification to the application or ap-
plications accessing the file are necessary to
implement such functionality.

In the case where a file’s symmetric key is en-
crypted with a password, it will be necessary
for the user to launch a daemon that listens for
password queries from the kernel cryptfs layer.
Without such a daemon, the user’s initial at-
tempt to access the file will be denied, and the
user will have to use a password set utility to
send the password to the cryptfs layer in the
kernel.

6.6 Other Considerations

Sparse files present a challenge to encrypted
filesystems. Under traditional UNIX seman-
tics, when a user seeks more than a block be-
yond the end of a file to write, then that space



is not stored on the block device at all. These
missing blocks are known as “holes.”

When holes are later read, the kernel simply
fills in zeros into the memory without actually
reading the zeros from disk (recall that they
do not exist on the disk at all; the filesystem
“fakes it”). From the point of view of what-
ever is asking for the data from the filesystem,
the section of the file being read appears to be
all zeros. This presents a problem when the
file is supposed to be encrypted. Without tak-
ing sparse files into consideration, the encryp-
tion layer will naïvely assume that the zeros be-
ing passed to it from the underlying filesystem
are actually encrypted data, and it will attempt
to decrypt the zeros. Obviously, this will re-
sult in something other that zeros being pre-
sented above the encryption layer, thus violat-
ing UNIX sparse file semantics.

One solution to this problem is to abandon
the concept of “holes” altogether at the Crypfs
layer. Whenever we seek past the end of the
file and write, we can actually encrypt blocks
of zeros and write them out to the underlying
filesystem. While this allows Cryptfs to ad-
here to UNIX semantics, it is much less effi-
cient. One possible solution might be to store a
“hole bitmap” as an Extended Attribute of the
file. Each bit would correspond with a block of
the file; a “1” might indicate that the block is a
“hole” and should be zero’d out rather than de-
crypted, and a “0” might indicate that the block
should be normally decrypted.

Our proposed extensions to Cryptfs in the near
future do not currently address the issues of di-
rectory structure and file size secrecy. We rec-
ognize that this type of confidentiality is im-
portant to many, and we plan to explore ways
to integrate such features into Cryptfs, possibly
by employing extra filesystem layers to aid in
the process.

Extended Attribute content can also be sensi-

tive. Technically, only enough information to
retrieve the symmetric decryption key need be
accessible by authorized individuals; all other
attributes can be encrypted with that key, just
as the contents of the file are encrypted.

Processes that are not authorized to access the
decrypted content will either be denied access
to the file or will receive the encrypted content,
depending on how the Cryptfs layer is param-
eterized. With this behavior, it would be possi-
ble for incremental backup utilities to function
properly, without requiring access to the unen-
crypted content of the files they are backing up.

At some point, we would like to include file in-
tegrity information in the Extended Attributes.
As previously mentioned, this can be accom-
plished via sets of keyed hashes over extents
within the file:

H0 = H{O0, D0, Ks}
H1 = H{O1, D1, Ks}
. . .
Hn = H{On, Dn, Ks}
Hf = H{H0, H1, . . . , Hn, n, s, Ks}

Wheren is the number of extents in the file,
s is the extent size (also contained as another
EA), Oi is the offset numberi within the file,
Di is the data from offsetOi to Oi + s, Ks is
the key that one must possess in order to make
authorized changes to the file, andHf is the
hash of the hashes, the number of extents, the
extent size, and the secret key, to help detect
when an attacker swaps around extents or alters
the extent size.

Keyed hashes prove that whoever modified the
data had access to the shared secret, which is,
in this case, the symmetric key. Digital sig-
natures can also be incorporated into Cryptfs.
Executables downloaded over the Internet can
often be of questionable origin or integrity. If
you trust the person who signed the executable,
then you can have a higher degree of certainty



that the executable is safe to run if the digital
signature is verifiable. The verification of the
digital signature can be dynamically performed
at the time of execution.

As previously mentioned, in addition to the ex-
tensions to the Cryptfs stackable layer, this ef-
fort is requiring the development of a cryptfs
library, a set of PAM modules, hooks into
GNOME and KDE, and some utilities for man-
aging file encryption. Applications that copy
files with Extended Attributes must take steps
to make sure that they preserve the Extended
Attributes.7

7 Conclusion

Linux currently has a comprehensive frame-
work for managing filesystem security. Stan-
dard file security attributes, process creden-
tials, ACL, PAM, LSM, Device Mapping (DM)
Crypt, and other features together provide good
security in a contained environment. To ex-
tend access control enforcement over individ-
ual files beyond the local environment, you
must use encryption in a way that can be easily
applied to individual files. The currently em-
ployed processes of encrypting and decrypting
files, however, is inconvenient and often ob-
structive.

By integrating the encryption and the decryp-
tion of the individual files into the filesystem
itself, associating encryption metadata with the
individual files, we can extend Linux security
to provide seamless encryption-enforced ac-
cess control and integrity auditing.

7See http://www.suse.de/~agruen/
ea-acl-copy/
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