
OS 6 - Control Strip Modules 1 of 14

Operating System

New Technical Notes

Developer Support

ð
®Macintosh

OS 6 - Control Strip Modules
Operating System

Revised by: Brian Bechtel September 1994
Written by: Allen Watson, Steve Christensen July 1994

We discuss Control Strip modules and how to write a new module. This information originally
appeared in the PowerBook 520, 520c, 540, 540c Developer Note. It is being published as a
Technical Note for ease of access. The information in the PowerBook 520, 520c, 540, 540c
Developer Note is obsolete. All future updates to this documentation will happen within this
Technical Note.

Topics
• Introduction
• Adding a Control Strip
• Module Interface
• Module Reentrancy
• Control Strip Module Reference
• Utility Routines
• Gestalt Selectors

Introduction

The Control Strip is a control panel that provides the operating environment for Control Strip
modules. It runs on any Macintosh PowerBook computer with System 7.0 or later.

The Control Strip is implemented in a private layer that appears in front of the windows in all
the application layers so that the windows will not obscure it. The user can move the window
for the Control Strip to any location on the display as long as the right or left edge of the strip is
anchored to the right or left edge of the display. Figure 1 shows a Control Strip fully opened,
with some imaginary modules added.

Figure 1 Control Strip, opened

The Control Strip has a tab on its unanchored end. The user can drag the tab to adjust the length
of the strip or hold down the Option key and drag the tab to move the strip to a new position.
The user can reduce the Control Strip to just display the tab alone, by clicking the tab. Clicking
the tab when the Control Strip is hidden makes the Control Strip visible again.

Macintosh Technical Notes

2 of 14 OS 6 - Control Strip Modules

Operating System

The different parts of the Control Strip either display status information or act as buttons. When
the user clicks a button, it is highlighted; some buttons also display additional elements such as
pop-up menus.

By holding down the Option key and clicking a display area, the user can drag the display area
to another position in the Control Strip.

The Control Strip software provides a standard screen location for a collection of individual
modules that provide status and control functions.

Adding Control Strip Modules

The Control Strip is implemented in software as a shell with individual control and status
modules added. The Control Strip software draws the strip that acts as the background for the
individual modules. Each module is responsible for drawing the icons and other objects that
make up its user interface.

Contents of Module Files

The only required resource in a module file is a resource containing the code necessary for the
module to interact with the Control Strip. A module file may contain more than one code
resource if it is to provide support for more than one function. In that case, each module in the
file is loaded and initialized separately and treated as an independent entity.

If a file contains only a single code resource, the resource may be unnamed, and the module
will be referenced by its filename. If more than one module is contained within a module file,
each module is required to have a unique name describing its functionality.

All other resources in a module file are optional, but there are several that are recommended in
order to support a custom icon and version information. The recommended resources are

• 'BNDL'
• 'FREF'
• 'ICN#', 'icl4', 'icl8', 'ics#', 'ics4', 'ics8'
• signature resource (same type as file’s creator)
• 'vers', ID=1

Developers should confine their resources to the range 256–32767.

Module Interface

The module’s interface to the Control Strip consists of a code resource of type 'sdev'. This
code is responsible for performing all of the functions required by the Control Strip (see below)
as well as any functions that are custom to the module itself. The module’s entry point is at the
beginning of the resource and is defined as

pascal long ControlStripModule(long message,
 long params,
 Rect *statusRect,
 GrafPtr statusPort);

Developer Technical Support September 1994

OS 6 - Control Strip Modules 3 of 14

Operating System

Interactions between a module and the Control Strip are managed by passing messages to the
module to tell it what to do or to obtain information about the module and its capabilities. Each
module is required to observe Pascal register saving conventions. A module may trash
registers D0, D1, D2, A0, and A1, but must preserve all other registers across its call.

Field descriptions

message A message number, from the list in the section “Control Strip
Module Messages”, that tells the module what action to perform.

params The result returned by the initialize call to the module. This
would typically be the handle to the module’s private variables.
It will be passed to the module on all subsequent calls. (Control
Strip modules are code resources, so they need to use the
techniques described in Tech Note PT 35 - Stand-Alone Code,
ad nauseam in order to use global variables.)

statusRect A pointer to a rectangle defining the area that a module may draw
within.

statusPort A pointer to the Control Strip’s graphics port. This will be either
a color or black-and-white graphics port depending on which
PowerBook Model the Control Strip is running on.

The result value returned by the module will vary depending on the message sent to it. Results
for each message are described in the sections on the individual messages.

Module Reentrancy

Any module that makes calls to routines such as GetNextEvent, ModalDialog or
PopUpMenuSelect should assume that it could be called reentrantly; that is, the module
could be called again while the initial call is still in progress. Situations to avoid are such things
as reusing a single parameter block for multiple calls.

Instead of using a single parameter block, it’s better, if possible, to allocate the parameter block
on the stack. In the case of asynchronous calls, using the stack could cause problems; in that
case, preventing the block’s reuse should be sufficient.

If you need to lock and unlock your global variables, it’s better to use HGetState and
HLock at the beginning of the call, and HSetState at the end, so that the state is restored to
what it was on entry.

Control Strip Module Reference

Control strip modules interact with the Control Strip software in three ways: by accepting
messages, by calling utility routines, and by calling Gestalt selectors. The next three sections
describe each of those interactions.

Control Strip Module Messages

All Control Strip modules must respond to messages from the Control Strip. The following
messages have been defined:

Macintosh Technical Notes

4 of 14 OS 6 - Control Strip Modules

Operating System

Message name number Description
sdevInitModule 0 Initialize the module
sdevCloseModule 1 Clean up before being closed
sdevFeatures 2 Return the feature bits
sdevGetDisplayWidth 3 Return the width of the module’s display
sdevPeriodicTickle 4 Periodically called when nothing else is happening
sdevDrawStatus 5 Update the interface in the Control Strip
sdevMouseClick 6 User has clicked on the module’s display area
sdevSaveSettings 7 Save any changed settings in the module’s preferences

file
sdevShowBalloonHelp 8 Display a help balloon, if the module has one

sdevInitModule

The sdevInitModule message is the first message sent to a module after the module has
been loaded from its file. Initialization allows the module to initialize its variables and to
determine whether it can run on a particular machine: for example, if the module’s function is to
display battery information it can run only on a PowerBook.

The module needs to load and detach any resources in the module’s resource file that will be
used, because the resource file will not be kept permanently open. What that means is that your
code can't use GetResource() or the like to retrieve the handle to one of the module's
resources on a subsequent call. Typically you would allocate space in your global variables for
handles to those detached resources.

The sdevInitModule message returns a result depending on its success at installing itself.
A positive result (≥0) indicates successful installation. This result value will be passed to the
module on all subsequent calls. A negative result indicates an error condition, and installation
of the module is aborted by the Control Strip software. The module will not receive a close
message when installation has been aborted.

sdevCloseModule

The sdevCloseModule message is sent to a module when it should be closed. Typically the
module itself will decide when this ought to happen. When the module receives this message,
it should dispose of all the detached resources it loaded as well as its global storage. No result
is expected.

sdevFeatures

The sdevFeatures message queries the module for the features it supports. It returns as its
result a long consisting of 1 bits for supported features and 0 bits for unsupported features. All
undefined bits are reserved by Apple for future features, and must be set to 0. The bits are
defined as

sdevWantMouseClicks 0 If this bit is set, the Control Strip will notify the module
of mouse down events. If this bit is not set, the Control
Strip assumes that the module only displays status
information with no user interaction.

sdevDontAutoTrack 1 If this bit is set, the Control Strip highlights the module’s
display and then calls the module to perform mouse
tracking; this bit is usually set when, for example, a

Developer Technical Support September 1994

OS 6 - Control Strip Modules 5 of 14

Operating System

module has a pop-up menu associated with it. If this bit
is cleared, the Control Strip tracks the cursor until the
mouse button is released, then sends an
sdevMouseClick message to the module to notify it
that there was a mouse-down event.

sdevHasCustomHelp 2 If this bit is set, the module is responsible for displaying
its own help messages, which can be customized
depending on its current state. If the bit is cleared, the
Control Strip will display a generic help message when
the cursor passes over the module’s display area and
Balloon Help is on.

sdevKeepModuleLocked 3 If this bit is set, the module’s code will be kept locked in
the heap. This bit should be set only if the module is
passing the address of one of its routines to the outside
world (for example, installing itself in a queue).

sdevGetDisplayWidth

The sdevGetDisplayWidth message is sent to a module to determine how much
horizontal space (in pixels) its display currently requires on the Control Strip. The module
should return the number of pixels as its result. The returned width should not be the
maximum width it requires for any configuration, but should reflect how much space it
currently requires, because it’s possible for a module to request that its display be resized.

Warning: You should be conservative in your use of Control Strip display space,
which is limited. Because several modules could be requesting space,
it’s possible that your module could be shoved off the end.

sdevPeriodicTickle

The sdevPeriodicTickle message is passed to the module periodically to allow the
module to update its display due to changes in its state. You should not assume any minimum
or maximum interval between tickles. The module should return, as its result, a long that
signals requests for actions from the Control Strip software. All undefined bits in the result are
reserved for future use by Apple and must be set to 0. The bits are defined as

sdevResizeDisplay 0 If this bit is set, the module needs to resize its display.
T h e C o n t r o l S t r i p w i l l s e n d a
sdevGetDisplayWidth message to the module and
followed by a sdevDrawStatus message so that the
module can update its display.

sdevNeedToSave 1 If this bit is set, the module needs to save changed
settings to disk. The Control Strip software will mark
the request but may defer the actual save operation to a
better time (for example, when the hard disk is
spinning).

sdevHelpStateChange 2 If this bit is set, the module’s state has changed so it
needs to update its help message. If a help balloon is
being displayed for this module, the Control Strip
software will remove it and put up a new help balloon for
the current state.

Macintosh Technical Notes

6 of 14 OS 6 - Control Strip Modules

Operating System

sdevCloseNow 3 If this bit is set, the module is requesting to be closed.
The Control Strip software will call the module to save
its settings, then call it again to close itself.

sdevDrawStatus

The sdevDrawStatus message indicates that the module has to redraw its display to reflect
the most recent state. This message is typically sent when the user clicks on the module’s
display area, when any of the module’s displays is resized, or when the Control Strip itself
needs to be updated, perhaps in response to a screen saver deactivation.

The statusRect parameter points to a rectangle bounding the module’s display area, in
local coordinates. All drawing done by a module within the bounds of the Control Strip must
be limited to the module’s display rectangle. The graphics port's clipRgn will be set to the
visible portion of this rectangle so you can draw all the elements in the display. If you need to
change the clipRgn, you should observe the initial clipRgn to avoid drawing over other
items in the Control Strip.

sdevMouseClick

When the user clicks in a module’s display area, the Control Strip software calls the module
with the sdevMouseClick message if the sdevWantMouseClicks bit is set in the
module’s features.

If the sdevDontAutoTrack bit is also set, the Control Strip draws the module’s display in
its highlighted state and then sends the sdevMouseClick message to the module. If the
sdevDontAutoTrack bit is not set, the Control Strip software tracks the cursor until the
mouse button is released. If the cursor is still within the module’s display area, the Control
Strip software sends the sdevMouseClick message to notify the module that a click
occurred. In either case, the module can then perform the appropriate function in response to a
mouse-down event.

This message returns the same result as the sdevPeriodicTickle message.

sdevSaveSettings

The sdevSaveSettings message is passed to the module when the Control Strip software
has determined that it’s a good time to save configuration information to the disk. This
message will be sent only if the module had previously set the sdevNeedToSave bit in the
result of a sdevPeriodicTickle or sdevMouseClick message. The module should
return an error code (File Manager, Resource Manager, or the like) indicating the success of the
save operation. The Control Strip software will continue to send this message to the module
until the module returns a result of 0, indicating a successful save.

sdevShowBalloonHelp

The Control Strip software calls the module with the sdevShowBalloonHelp message if
Balloon Help is turned on, the module has previously set the sdevHasCustomHelp bit in its
features, and the cursor is over the module’s display area. The module should then call the
Help Manager to display a help balloon describing the current state of the module. The module
should return a value of 0 if it’s successful or an appropriate error result if not.

Developer Technical Support September 1994

OS 6 - Control Strip Modules 7 of 14

Operating System

Utility Routines

The Control Strip software provides a set of utility routines that are available to Control Strip
modules. They are provided to promote a consistent user interface within the Control Strip and
to reduce the amount of duplicated code that each module would have to include to support
common functions.

The utility routines are called through a selector-based trap, _ControlStripDispatch
($AAF2). If an unimplemented routine is called, it will return paramErr as the result.

Warning: These routines should not be called at interrupt time because they all
move memory.

SBIsControlStripVisible

You can use the SBIsControlStripVisible routine to find out whether the Control Strip
is visible.

pascal Boolean SBIsControlStripVisible();

The SBIsControlStripVisible routine returns a Boolean value indicating whether or
not the Control Strip is currently visible. It returns a value of true if the Control Strip is visible,
or a value of false if it’s hidden.

It is possible for this call to return a value of true even when the Control Strip is not visible.
That happens whenever the Control Strip is not accessible in the current environment. As soon
as that condition changes, the Control Strip becomes visible again and the returned value
correctly reflects the actual state.

SBShowHideControlStrip

You can use the SBShowHideControlStrip routine to show or hide the Control Strip.

pascal void SBShowHideControlStrip(Boolean showIt);

The SBShowHideControlStrip routine determines the visibility state for the Control Strip
based on the value of the showIt parameter. Passing a value of true makes the Control Strip
visible, and passing a value of false hides it. Modules shouldn’t typically need to call this
routine, but it’s provided as a means for other software to hide the Control Strip when it might
get in the way.

Calling SBShowHideControlStrip with a showIt value of true may or may not show
the Control Strip, depending on the current environment: if the Control Strip is not accessible,
it does not become visible. If a showIt value of true is passed to this routine, then when the
environment changes, the Control Strip will become visible.

Macintosh Technical Notes

8 of 14 OS 6 - Control Strip Modules

Operating System

SBSafeToAccessStartupDisk

You can use the SBSafeToAccessStartupDisk routine to find out whether the internal
hard disk is spinning so that your software can determine whether to make a disk access or
postpone it until a time when the disk is already spinning.

pascal Boolean SBSafeToAccessStartupDisk();

The SBSafeToAccessStartupDisk routine returns a Boolean value of true if the disk is
spinning and false if it is not.

SBOpenModuleResourceFile

You can use the SBOpenModuleResourceFile routine to open a module resource file.

pascal short SBOpenModuleResourceFile(OSType fileCreator);

The SBOpenModuleResourceFile routine opens the resource fork of the module file
whose creator is fileCreator, and returns the file’s reference number as its result. If the file
cannot be found or opened, SBOpenModuleResourceFile returns a result of –1.

SBOpenModuleResourceFile provides a means for a module to load in large or
infrequently used resources that it doesn’t usually need, but that it requires for a particular
operation.

SBLoadPreferences

You can use the SBLoadPreferences routine to load a resource from a preferences file.

pascal OSErr SBLoadPreferences(ConstStr255Param prefsResourceName,
 Handle *preferences);

The SBLoadPreferences routine loads a resource containing a module’s configuration
information from the Control Strip’s preferences file. The prefsResourceName parameter
points to a Pascal string containing the name of the resource. The preferences parameter
points to a variable that will hold a handle to the resource read from the file. The handle does
not need to be preallocated.

If either prefsResourceName or preferences contains a nil pointer,
SBLoadPreferences does nothing and returns a result of paramErr. If the resource is
successfully loaded, it returns a result of 0. SBLoadPreferences can also return other
Memory Manager and Resource Manager errors if it fails during some part of the process.

SBSavePreferences

You can use the SBSavePreferences routine to save a resource to a preferences file.

pascal OSErr SBSavePreferences(ConstStr255Param prefsResourceName,
 Handle preferences);

The SBSavePreferences routine saves a resource containing a module’s configuration
information to the Control Strip’s preferences file. The prefsResourceName parameter

Developer Technical Support September 1994

OS 6 - Control Strip Modules 9 of 14

Operating System

points to a Pascal string containing the name of the resource. The preferences parameter
contains a handle to a block of data which will be written to the file.

If either prefsResourceName or preferences has a nil value, SBSavePreferences
does nothing and returns a result of paramErr. If the resource is successfully saved,
SBSavePreferences returns a result of 0. SBSavePreferences can also return other
Memory Manager and Resource Manager errors if it fails during some part of the process.

Macintosh Technical Notes

10 of 14 OS 6 - Control Strip Modules

Operating System

SBGetDetachedIndString

You can use the SBGetDetachedIndString routine to get a string from a detached
resource.

pascal void SBGetDetachedIndString(StringPtr theString,
 Handle stringList,
 short whichString);

The SBGetDetachedIndString routine is the detached resource version of
GetIndString. The parameter theString points to a Pascal string; stringList is a
handle to a detached 'STR#' resource; and whichString is the index (1–n) into the array of
Pascal strings contained in the detached resource. SBGetDetachedIndString will copy
the string whose index is whichString into the space pointed to by theString. If
whichString is out of range, SBGetDetachedIndString will return a zero-length
string.

SBGetDetachIconSuite

You can use the SBGetDetachIconSuite routine to set up a detached icon suite.

pascal OSErr SBGetDetachIconSuite(Handle *theIconSuite,
 short theResID,
 unsigned long selector);

The SBGetDetachIconSuite routine creates a new icon suite, loads all of the requested
icons, and then detaches the icons. The parameter theIconSuite points to the location
where the handle to the icon suite will be stored; the parameter theResID is the resource ID of
the icons that make up the icon suite; and the parameter selector tells which icons should be
loaded into the suite. The selector parameter should typically contain one (or a combination
of) the following values:

svAllLargeData 0x000000FF load large 32-by-32-pixel icons ('ICN#', 'icl4', 'icl8')
svAllSmallData 0x0000FF00 load small 16-by-16-pixel icons ('ics#', 'ics4', 'ics8')
svAllMiniData 0x00FF0000 load mini 12-by-12-pixel icons ('icm#', 'icm4', 'icm8')

These values may be OR-ed together to load combinations of icon sizes.
SBGetDetachIconSuite returns an appropriate error code if it’s unsuccessful, or 0 if it
was able to load the icon suite. Note that if none of the icons comprising the icon suite could
be found, the call returns the error resNotFound.

Warning: You should call SBGetDetachIconSuite only when the module’s
resource file is open, which is typically the case during a module’s
initialization call.

SBTrackpopupMenu

You can use the SBTrackpopupMenu routine to manage a pop-up menu.

pascal short SBTrackpopupMenu(const Rect *moduleRect,
 MenuHandle theMenu);

Developer Technical Support September 1994

OS 6 - Control Strip Modules 11 of 14

Operating System

The SBTrackpopupMenu routine handles setting up and displaying a pop-up menu
associated with a module. The module should pass a pointer to its display rectangle and a
handle to the menu to use. The menu will be displayed just above or below the module’s
display rectangle, allowing the user to view the current configuration or to change the settings.
SBTrackpopupMenu returns which menu item was selected, or 0 if no item was selected
because the user moved the cursor outside the menu’s bounds.

Warning: Menus are displayed in the Control Strip’s font, so don’t use the
CheckItem() routine to mark menu items, because a checkmark is
supported only in the system font. Use the SetItemMark() routine
instead and pass it a bullet (•).

SBTrackSlider

You can use the SBTrackSlider routine to display and set an arbitrary parameter.

pascal short SBTrackSlider(const Rect *moduleRect,
 short ticksOnSlider,
 short initialValue);

The SBTrackSlider routine displays an unlabeled slider above the module’s display
rectangle. You can use the slider for displaying and setting the state of an arbitrary parameter.
The parameter moduleRect contains a pointer to the module’s display rectangle;
ticksOnSlider is the upper bounds of the value returned by the slider; and
initialValue is the starting position (0 to ticksOnSlider–1). When the user releases the
mouse button, SBTrackSlider returns the final position.

SBShowHelpString

You can use the SBShowHelpString routine to display a Help balloon.

pascal OSErr SBShowHelpString(const Rect *moduleRect,
 StringPtr helpString);

The SBShowHelpString routine displays a module’s Help balloon. The module passes a
pointer to its display rectangle and a pointer to a Pascal string, and the routine displays the
balloon if possible. If the help string has a length of 0 or the Help Manager is unable to display
a balloon, an error result is returned. If SBShowHelpString successfully displays the Help
balloon, it returns a result of 0.

SBGetBarGraphWidth

You can use the SBGetBarGraphWidth routine to find out the how wide a bar graph drawn
by SBDrawBarGraph (described next) will be so that a module can calculate its display
width.

pascal short SBGetBarGraphWidth(short barCount);

The SBGetBarGraphWidth routine returns the width of a bar graph containing barCount
segments. If barCount has a value less than 0, the SBGetBarGraphWidth routine returns
a width of 0.

SBDrawBarGraph

Macintosh Technical Notes

12 of 14 OS 6 - Control Strip Modules

Operating System

You can use the SBDrawBarGraph routine to draw a bar graph.

pascal void SBDrawBarGraph(short level,
 short barCount,
 short direction,
 Point barGraphTopLeft);

The SBDrawBarGraph routine draws a bar graph containing the number of segments
specified by the barCount parameter in a module’s display area. If the value of barCount is
less than or equal to 0, SBDrawBarGraph does nothing.

The bar graph is drawn relative to the location specified by barGraphTopLeft.
Figure 2 shows the way the point barGraphTopLeft determines the position of
the bar graph.

Figure 2 Positioning a bar graph

The level parameter determines how many segments are highlighted. The value of level
should be in the range of 0 to barCount–1. If the value of level is less than 0, no
segments in the bar graph are highlighted; if level is greater than or equal to barCount, all
segments in the bar graph are highlighted.

The direction parameter specifies which way the bar graph will be drawn to show a larger
level. It should be one of the following values:

#define BarGraphSlopeLeft -1 // max end of sloping graph is on the left
#define BarGraphFlatRight 0 // max end of flat graph is on the right
#define BarGraphSlopeRight 1 // max end of sloping graph is on the right

Figure 3 shows the resulting bar graph for each direction value. The arrows indicate which
way an increasing level value is displayed. For sloped versions of the bar graph, the number
of segments specified by the barCount value may not be larger than 8. If a larger
barCount value is passed, SBDrawBarGraph draws nothing.

Figure 3 Directions of a bar graph

SBModalDialogInContext

You should use the SBModalDialogInContext in place of the ModalDialog routine to
keep background applications from getting run while your modal dialog window is visible.

pascal void SBModalDialogInContext(ModalFilterProcPtr filterProc,

Developer Technical Support September 1994

OS 6 - Control Strip Modules 13 of 14

Operating System

 short *itemHit);

The SBModalDialogInContext routine is a special version of ModalDialog that
doesn’t allow background applications to get time while a modal dialog window is visible.

Gestalt Selectors

The Control Strip software installs two Gestalt selectors to return information to the outside
world. One selector returns software attributes, and the other returns the software version.

gestaltControlStripAttr

The selector gestaltControlStripAttr ('sdev') returns 32 bits describing the
software attributes of this version of the Control Strip. The following bits are defined:

gestaltControlStripExists 0 1 = Control Strip is installed
gestaltControlStripVersionFixed 1 1 = Gestalt selector has been fixed

The gestaltControlStripVersionFixed indicates that the correct Gestalt selector has
been implemented for the Control Strip. An early version of Control Strip software used an
incorrect Gestalt selector (it was incorrectly 'sdvr', which conflicted with a PowerTalk
selector.)

Macintosh Technical Notes

14 of 14 OS 6 - Control Strip Modules

Operating System

gestaltControlStripVersion

The selector gestaltControlStripVersion ('csvr') returns the version of
Control Strip software that is installed. The format of the returned version is the same as that
of the numeric part of a 'vers' resource, that is:

Bits 31-24 Major part of the version, in BCD
Bits 23-20 Minor part of the version, in BCD
Bits 19-16 Bug release version, in BCD
Bits 15- 8 Release stage:

$80=final
$60=beta
$40=alpha
$20=development

Bits 7- 0 Revision level of nonreleased version, in binary

Thus, if the software version were 1.5.3b25, the gestaltControlStripVersion selector would
return $01536019.

Further Reference:
• Technical Note PT 35 - Stand-Alone Code, ad nauseam

	Introduction
	Adding Control Strip Modules
	Module Reentrancy
	Control Strip Module Reference
	Utility Routines
	Gestalt Selectors

